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I .  INTRODUCTION 

Our highly technological  society demands increasing amounts of 

energy to maintain i ts  high standard of l iving. However,  our national 

security is  threatened by our dependence on imported oil .  Also,  the 

question of whether the benefits  of nuclear energy outweigh the dangers 

is  st i l l  unanswered. The most abundant fossil  fuel  resource in the 

United States is  coal,  but i ts  increasing use also presents problems. 

The burning of coal creates a large amount of waste in the form of ash.  

The manner of disposal of this ash is  important because i t  contains many 

elements which could adversely affect  the environment and human health 

(1-5).  Improper disposal could lead to hazardous amounts of many 

elements in the soil  and water.  

The periodic table in Fig.  I- l  shows the elements of concern (6).  

Low levels of arsenic,  cadmium, mercury and lead are toxic to most 

biological  systems (6).  The increased salinity of the soil  (7-9),  boron 

(9,10) and, to a lesser extent,  copper,  nickel and zinc (6) are al l  toxic 

to crops (11) and other plants.  Molybdenum and selenium (12-14),  and, 

to a lesser extent,  chromium, vanadium and f luorine (5) are toxic to 

l ivestock at  elevated levels,  and ult imately hazardous to human health 

(5,15).  Uranium and thorium are concentrated in the ashes and the 

increased radioactivity could be deleterious;  however,  more study of this 

problem is  needed (5,15).  Inhalable gases and submicrometer particulates 

can also provide a pathway for toxic elements to enter biological  

systems. The oxides of sulfur and nitrogen produce hazardous "acid rain".  
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Particulates highly concentrated in many of the toxic elements enter the 

body through the respiratory tract  (1,5,16-18).  

The waste ash can also be useful.  Under controlled conditions,  the 

ash can be added to the soil  to provide nutrients to aid the growth of 

useful crops and other plants (10,19-21).  Acidic soils  and acid mine 

drainage can be neutralized by the addition of proper amounts of ash 

(10,22).  The ash has a high adsorption capacity and can be used to 

remove hazardous and unpleasant elements and organic species from surface 

and waste waters (22).  The ash can also be used as a conditioner for 

industrial  waste sludge (22).  The ash is  used extensively in con­

struction and soil  stabil ization (23).  Another use being developed is  

the extraction of minerals from the ash (23).  Two of the most important 

minerals are ferric oxide (24,25) and alumina (25,27).  The ash may also 

be a source of metals for which good ores are scarce.  

To determine the potential  environmental  and potential  commercial  

impact of the combustion of a certain coal and the disposal of i ts  ash,  

a materials balance study of the fluent coal and the effluent ash needs 

to be performed. The analytical  method used should have several  

demanding characterist ics.  The number of potentially hazardous and use­

ful  elements is  large,  so the method should be capable of multielement 

analysis.  The elements of interest  range in concentration from ultra-

trace to major consti tuents,  so the method should be sensit ive with low 

detection l imits and have a high l inearity of response over the concen­

tration range. The method must be economically feasible with a low 

cost  X t ime/element ratio.  The analytical  method of spark source 



www.manaraa.com

4 

mass spectrography is  capable of meeting these requirements.  All  of the 

elements from li thium to uranium can be recorded simultaneously and 

permanently on a photographic plate (28-31).  The detection l imits for 

the elements range from 100 to 1 ppb (29,30).  The l inearity of response 

and dynamic range of concentration of the photographic emulsion are of 

5 7 
the order of 10 to 10 depending on the number of exposure levels used 

(29,31).  The cost  and amount of t ime for an analysis are relatively 

high, but the number of elements analyzed is  relatively very large,  so 

on a cost  per element basis,  i t  is  an economically feasible method when 

compared to other possible analytical  methods.  

The major disadvantage of this method is  the sensit ivity of 

analytical  accuracy and precision to a number of factors.  These factors 

include the homogeneity of the sample,  the stabil i ty of the radio 

frequency (r .f .)  spark,  the matrix of the sample,  the complexity of the 

mass spectrum, and the calibration of the photographic emulsion. These 

factors are particularly important in the analysis of ash from coal.  In 

^ ^ 3 n 1  r* c C ^ l"» "I TO ^ W.» r* . . ^ «m ^ Ck (V , V, iw I, t \j Miy V» I I c I a uu tia utiicu • UI ca c ua i c 

must be taken to assure the maximum homogeneity of the sample (29,32),  

especially for ash which is  a very inhomogeneous substance.  An erratic 

r .f .  spark is  detrimental  to the analytical  accuracy and precision (33),  

so the spark should be stabil ized as much as possible.  The ionization 

efficiency of the spark is  dependent upon the sample matrix (34).  Good 

standard samples with matrices similar to that  of the ash are needed to 

calculate accurate relative sensit ivity coefficients for the elements 

(35).  The ash contains most of the elements in the earth 's  crust  which 



www.manaraa.com

5 

results in a very complex rrass spectrum. This complexity l imits the 

number of choices of elements to be used as internal standards because 

of spectral  interferences (36).  The accuracy of the analysis is  also 

dependent upon the accuracy of the calibration of the photographic 

emulsion (37-39).  

The purpose of this research was to develop a method of analysis 

for ash from coal by spark source mass spectrograph/ which would assure 

good homogeneity of the sample,  improve the stabil i ty of the r .f .  spark,  

determine accurate relative sensit ivity coefficients for the elements in 

the ash matrix,  select  internal standards free from spectral  

interferences,  and provide an accurate calibration of the photoplate 

emulsion. The effectiveness of this method was to be tested by the 

performance of a mass balance study on the coal burned at  the Iowa State 

University power plant.  
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II .  PRINCIPLES OF SPARK SOURCE MASS SPECTROMETRY 

A. Ion Source 

Ions are formed in spark source mass spectrometry (SSMS) when a 

radio frequency high voltage is  applied between two conducting sample 

electrodes.  The result ing sparks volati l ize a small  amount of the sample 

and create ions of i ts  consti tuent elements.  Electrodes of conducting 

samples can be in the form of rods,  bars,  chips,  needles,  or any other 

tractable form. Nonconducting samples must be powered, mixed with a 

spectroscopically pure conducting powder (graphite,  s i lver,  etc.) ,  and 

compressed into suitable electrodes.  The sparking process takes place 

at  a pressure £ 10"^ torr  in a special  differentially pumped vacuum 

housing. 

Sample electrodes are mounted in appropriate holders which, can be 

manipulated from outside the vacuum housing. The electrodes are 

surrounded by a special  shield which is  maintained along with the elec­

trodes at  the ion accelerating d.c.  potential  of 15-30 keV. The purpose 

of the shield is  to maintain a uniform electric f ield around the 

electrodes,  to reduce contamination of the source housing by materials 

sputtered from the electrodes,  and to prevent overloading the 

accelerating voltage power supply (33).  The shield also serves to 

minimize the need to clean the housing periodically and reduces the 

instrument "memory" from one sample to the next.  

A pulsed 1 MHz potential  of 100 kV, peak-to-peak, is  applied 

between the sample electrodes.  A schematic view of the circuit  is  
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shown in Fig.  II- l .  Spark parameters can be varied as required.  Pulse 

lengths between 20 and 200 ys are available and pulse repeti t ion rates 

can be varied from one to several  thousand pulses s~^. The r . f .  spark 

consists of a number of consecutive dist inct  voltage breakdowns during 

each pulse (40).  This number depends upon the electrode gap width which 

in turn determines the breakdown voltage and the relaxation time of the 

r .f .  voltage in the spark circuit .  Successive breakdowns character­

ist ically occur several  r . f .  cycles after a previous breakdown. 

The r . f .  spark is  a very energetic chemical environment.  Sample 

material  is  volati l ized and ions are formed from the surface of the 

electrodes in a pulsating plasma r ich in ions and electrons.  The 

kinetic energies of the ions can be several  hundred to several  thousand 

keV. These ions are accelerated into the grounded mass spectrometer 

with energies corresponding to the accelerating voltage.  

B. Electrostatic and Magnetic Analyzers 

IMC lai yc CI ICI yj ipi cau ui one i v i lo lui mcu ujr vue i • > . :>pû « in 

necessitates the use of a mass spectrometer with very good focusing and 

resolving capabili t ies.  The majority of spark source instruments are 

douole-focusing using the Mattauch-Herzog geometry.  A diagram of a 

typical  instrument is  shown in Fig.  II-2 (41).  

The coupling of an electrostatic f ield with a magnetic f ield in 

tandem provides both velocity and directional focusing, plus mass 

dispersion. The electrostatic f ield produces an energy spectrum by 

dispersing the narrow ion bean (42) according to:  
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D e  = [ ( 1  -  C O S  / 2 ' 0 g )  + > / 2 " s i n  ( I I - l )  

where r^ is  the radius of curvature of the electrostatic f ield,  is  

the object  distance,  and is  the deflection angle of the f ield.  Only 

ions with a certain small  energy spread enter the magnetic f ield which 

focuses ions of equal m/z,  but differing velocit ies,  to a single point.  

The mass dispersion (42) is  described by: 

Ar 
°m = — - cos <f^) + %;(sin (1 -  cos o„)tar,  e^)]  (11-2) 

m 

where r^ is  the radius of curvature of the magnetic f ield,  is  the 

image distance,  ({i i s  the deflection angle of the f ield,  and e^ is  the 

angle made by the average ion beam as i t  exits the f ield and the 

perpendicular to the f ield boundary.  

In general ,  double-focusing is  obtained for only one value of r^,  

but under certain conditions al l  the ions can be focused in the same 

plane.  These conditions (41) require that  the entrance s l i t  to the 

electrostatic f ield must be at  the object  focus,  and the ions must exit  

the electrostatic f ield and enter the magnetic f ield as a parallel  beam. 

The Mattauch-Herzog geometry satisfies these conditions.  An ion-

sensit ive photographic plate can be placed at  the exit  pole boundary of 

the magnetic f ield to record the mass spectrum. 
M 

The mass resolution (R = where M is  mass) provided by this 

instrument geometry depends solely on the constants associated with the 

electrostatic f ield (42) according to:  
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r  
R = -^ (II-3) 

e 

where is  the entrance s l i t  width.  However,  the mass dispersion 

depends solely on the constants associated with the magnetic f ield 

according to Equation II-2.  The posit ion of a spectral  l ine on the 

photographic plate is  directly proportional to the square root of i ts  
_o 

m/z. Generally,  both analyzers are operated at  a pressure £ 10" torr .  

C. Photographic Detection 

Ion-sensit ive si lver bromide photographic plates are commonly used 

in SSMS to provide a permanent sensit ive record of mass spectra in a 

small  amount of space.  The complete mass spectrum from Li to U can be 

recorded simultaneously.  Both major and ultra-trace elemental  analyses 

can be performed in one experiment by recording a sequence of different 

exposure levels.  

The photographic emulsion is  a collector-transducer-recorder 

comDinea into one system. Sensit ivity ana tne snape of tne response 

curve are the two primary measures of the performance of the emulsion 

(43).  Sensit ivity is  defined as the fractional area blackened per 

incident ion density,  for vanishingly small  ion densit ies (44).  An ion 

produced by the r .f .  spark is  energetic enough to make a single halide 

crystal  developable (45).  The sensit ivity is  dependent upon both the 

mass and energy of an ion.  This topic will  be discussed in detail  in 

Chapter IV in this dissertation.  The reproducibil i ty of an exposure 
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depends on the uniformity of the emulsion on a photoplate and from plate 

to plate,  as well  as on the developing process.  

The response of the emulsion is  expressed as fractional blackening B 

or transmittance T, where B is  directly proportional to the number of 

blackened halide grains (46) 

B = 1 -  T = ((JJq -40/&Q (11-4) 

and where is  the l ight intensity incident on the photoplate,  as 

measured by a microphotometer,  and ijj  i s  the l ight intensity transmitted 

through the plate.  Two parameters are measured to evaluate the response 

of an emulsion: the total  ionic charge Q, as measured by an integrating 

ion monitor;  and B (47).  The reciprocity law is  valid for these ion-

sensit ive emulsions (48).  Consequently,  the emulsion is  an integrating 

detector.  The total  number of exposed halide grains in a spectral  l ine 

( i-â- '  the area under the intensity curve for the l ine) is  directly 

proportional to the concentration of the ion in the total  ion beam for 

that  exposure.  

One major phenomenon which l imits sensit ivity is  secondary 

blackening. Secondary blackening is  due to two major causes (47):  

charge exchange between ions and neutral  species producing diffuse bands 

which occur in predictable regions of the spectrum, and blackened 

regions,  known as "fog" or "halo",  near major elemental  l ines,  which are 

produced by several  complex mechanisms (49,50).  Several  methods have 

been used to reduce this blackening (51-55).  One important method 

involves a developing process by which the emulsion is  f irst  bleached 
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and then allowed to undergo internal development (55).  This method can 

improve the sensit ivity by a factor of three (57).  

The recorded mass spectra are evaluated by computer methods.  The 

microphotometer which measures the posit ions and transmissions of the 

spectral  l ines produces data which are treated by means of a number of 

computer programs. These programs determine the exact m/z values for 

the l ines and the ion concentrations.  Other programs evaluate the 

results and the exposure data to determine the elemental  concentrations 

in the sample.  

The precision obtainable by this method of analysis is  generally 

about ±20% relative standard deviation (r .s .d.)  (29).  The accuracy is  

generally about ±30% r .s .d.  Isotope dilution SSMS (28) and recent 

developments in the use of electrical  detection (58) improve both the 

precision and accuracy to ±3-5% r .s .d.  
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III .  REVIEW OF RELATED WORK 

A. Other Methods of Analysis for Coal and Ashes 

1.  Instrumental  neutron activation analysis 

The multielemental  method for analysis used most often for coal and 

ash is  instrumental  neutron activation analysis (INAA) using thermal 

neutrons.  INAA is  a nondestructive technique potentially capable of 

simultaneous multielement detection.  The t ime of analysis per sample can 

be small  because many samples can be irradiated at  once.  This method is  

especially good for the assay of minor and trace elements in coal 

because the major consti tuents of coal,  carbon, oxygen and hydrogen, are 

not activated by thermal neutrons.  The normal procedure used in INAA 

is  to dry the samples and place them in polyethylene vials for short  

irradiation periods,  or quartz vials for longer ones.  Standard samples 

are treated in l ike manner.  The vials are placed in the core of a 

nuclear reactor and irradiated by thermal neutrons.  The vials are 

removed and the gamma-raj  spectra of the samples and standards are 

counted and energy analyzed at  a fixed geometry using a Ge(Li) detector.  

The counting data are processed by computer and the analytical  results 

are reported; Every isotope has a unique half-l ife and gamma-ray 

emission energy. The intensity of the emission of an element is  

proportional to i ts  concentration.  

Many analyses have been performed on NBS coal and ash standards to 

demonstrate the applicabil i ty of INAA to the analysis of these types of 

samples (59-74).  Differences in matrix between samples and standards 
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are not important because only the nuclear properties of the elements are 

involved in the analyses (60).  The coincidence of gamma-rays emitted by 

certain elements and their  measurement by dual detectors has been used 

to improve the sensit ivity of the method for some elements (65).  The 

level of the thermal neutron flux (68) and the energy of the impinging 

neutrons can be selected to improve the analytical  results for certain 

elements (71).  The precision and accuracy of the method is  generally 

±10% or better for most elements.  As many as 42 elements have been 

detected simultaneously in standard samples (72).  Coal and ash samples 

from power plants have been analyzed by this method (5,75-82) using 

NBS standards and samples from other sources as standards.  As many as 

44 elements in real  samples have been analyzed successfully with 

elemental  precisions and accuracies ranging from ±5-20% (78),  

Radiochemical separations are performed when spectral  interferences 

occur.  The irradiated samples are dissolved and the elements of 

interest  are separated from interferences by chromatographic (83-89),  

dist i l lat ion (90,91),  or otner suitanle metnoas (92-95).  

Irradiation with epithermal neutrons improves the sensit ivity of 

the method for a number of elements (96-101).  Irradiation with both 

thermal and epithermal neutrons can improve the analytical  results for 

up to 44 elements in power plant and standard samples (97,102,103).  

2.  Neutron-capture prompt gamma-ray activation analysis 

Neutron-capture prompt gamma-ray activation analysis (PGA.A) is  a 

technique very similar to INAA. The method of sample preparation and 
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irradiation is  the same, but the gamma-rays emitted immediately after 

neutron-capture are detected.  The emission of some elements which do 

not yield convenient radioisotopes for detection by INAA can be measured. 

Most of the analyses performed by PGAA have concerned NBS and I l l inois 

State Geological  Survey coal and ash standard samples (74,104-107).  

As many as 17 elements have been analyzed simultaneously with 

precisions and accuracies as good as or better than ±10% (74,107).  

3.  Instrumental  photon activation analysis 

Instrumental  photon activation analysis (IPAA) is  a technique also 

very similar to INAA. The samples are irradiated with high energy 

electrons (MeV range) instead of neutrons.  The electron energies are 

selected to yield the best  sensit ivit ies for the elements of interest .  

The gamma-ray emission is  detected in the same manner as in INAA. Most 

of the analyses performed by IPAA have concerned NBS coal and ash 

standard samples (62,72,93,108-110).  As many as 36 elements have been 

analyzed simultaneously with precisions and accuracies as good as or 

better than ±10% (72).  IPAA is  often used in conjunction with INAA to 

provide the best  sensit ivity possible for each element of interest  by 

judicious selection (62,72,93).  

4.  X-ray fluorescence spectrometry 

X-ray fluorescence spectrometry (XRF) is  also a nondestructive,  

sensit ive,  multielemental  method of analysis for coal and ash samples.  

An advantage of XRF over INAA is  that  a nuclear reactor is  not needed. 

Samples are commonly prepared by homogeneous mixing with a pure.  
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self-binding support  material  which has a noninterfering XRF spectrum. 

The mixture is  pressed to form a thin disk and placed in the '  

spectrometer.  An x-ray tube and interchangeable secondary targets 

(£.£, ,  Zr,  Mo, Tb, Ag) are used to produce nearly monochromatic exci­

tation radiation for each group of elements of interest .  The f luores­

cence is  detected using a Si(Li) detector.  Energy-dispersive XRF 

permits simultaneous detection of al l  radiations.  The spectrometer is  

calibrated by using standard samples.  A variety of methods are used to 

correct  for matrix effects and background radiation.  

Many analyses have been performed on NBS standard coal and ash 

samples (4,79,82,111-115) to demonstrate the applicabil i ty of this 

method to the analysis of these types of samples.  As many as 40 elements 

have been detected simultaneously in these standard samples with 

precisions and accuracies better than ±10% (112).  Coal and ash samples 

collected from power plants have been analyzed (4,79,91,115,116) using 

NBS standards and samples from other sources as standards.  As many as 

29 elements in real  samples have been analyzed successfully with 

precisions and accuracies ranging from ±5-10% (115).  

5.  Atomic emission spectroscopy 

Atomic emission spectroscopy (AES) has been used extensively for 

the analysis of coal and ash samples.  The instrument has an excitation 

source,  of which there are several  different types,  a monochromator for 

single elemental  analysis or a polychromator for multielemental  

analysis,  and a detector,  usually either a photographic plate or fi lm 
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(spectrography),  or a photomultiplier tube or tubes (spectrometry).  The 

photographic method of detection requires the calibration of the 

emulsion. A rotating stepped sector disk is  used to record different 

exposure levels and the step ratio determines the manner in which the 

emulsion is  calibrated.  The internal standard method of analysis is  

generally used with photographic detection.  A spectrometer is  calibrated 

with standard solutions.  The types of samples to be analyzed and the 

elements of interest  determine the type of excitation source used. 

In the past ,  the excitation source used most often for the analysis 

cf coal and ash samples has been the d.c.  arc (91,117-124),  The analyses 

have generally been multielemental  using photographic detection (118-122, 

124).  The powdered sample is  homogeneously mixed with the internal 

standard and placed in the cup of a graphite sample electrode.  The 

sample is  excited by the d.c.  arc produced between sample and counter 

electrodes.  As many as 35 elements have been detected in 900 ashed coal 

samples (121) and the precision and accuracy of the method is  usually 

better tnan ±15% (91,117,119,123,124).  The a .c.  arc (125) and spark 

(124) excitation sources have also been used to analyze these types of 

samples.  

The inductively coupled plasma excitation source requires 

dissolution of the sample.  The sample solution is  injected into a radio 

frequency excited,  inductively coupled argon plasma. The atomic emission 

of the sample consti tuents is  diffracted by a grating in a polychromator 

and the spectrum is  detected simultaneously by a series of photo-

multipliers.  Also,  a computer controlled scanning monochromator,  which 
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can increase the number of elements detected,  can be used in place of the 

polychromator arrangement (125,127).  Fusion dissolution methods have 

been the most successful for coal and ash analysis by this technique 

(61,127).  As many as 28 elements have been detected in NBS standard 

and power plant coal and ash samples with precisions and accuracies as 

good as ±3% (51).  

Gas chromatography-microwave emission spectroscopy (GC-MES) is  an 

AES technique which is  normally used for the single elemental  detection 

of certain volati le metalloids in coal and ash samples (79,128,129).  

The samples are dissolved and the elements of interest  are complexed 

selectively by organic chelates.  The sample is  injected into a GC and 

the separated elements enter a quartz tube containing an argon microwave 

plasma. The emission enters a monochromator and elemental  detection is  

achieved using a photomultiplier tube.  Arsenic (129) and selenium (79, 

128) have been detected in NBS and power plant samples with precisions 

and accuracies better than ±5%, Other excitation sources which have been 

used for single elemental  analysis of these samples are the radio 

frequency (r .f .)  furnace (130) and the helium glow discharge (131).  

6.  Atomic absorption spectrometry 

Atomic absorption spectrometry (AAS) has been used extensively for 

the analysis of individual elements in coal and ash samples.  The 

spectrometer has a source of absorption radiation (^.£.5 hollow cathode 

lamp, electrodeless discharge lamp),  a means of atomizing the sample,  

of which there are several ,  a monochromator,  and a detector,  usually a 
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photomultiplier tube.  The spectrometer is  calibrated with standard 

solutions.  The source lamp must be changed for each element of interest  

and the instrument recalibrated.  The types of samples to be analyzed 

and the elements of interest  determine the type of sample atomization 

used. 

Sample atomization by f lame is  a method commonly used for the 

analysis of coal and ash samples (4,5,31,82,91,132-137).  The f lame is  

produced by the ignit ion of a mixture of an organic gas and oxidizer 

gas (e. .£. ,  acetylene-air ,  acetylene-oxygen).  The sample is  dissolved 

and aspirated into the flame absorption cell  of the spectrometer.  The 

flûme atomizes the sample and the absorption of the element of interest  

is  measured. A variety of fusion and acid dissolution methods have 

been used for coal and ash samples.  As many as 17 elements in NBS and 

power plant ash samples (137) and 8 elements in NBS and power plant 

coal samples (31) have been detected with precisions and accuracies 

better than ±5%. 

Sample atomization by a graphite furnaco can improve the sensi­

t ivity of the method for many elements (31,80,91,134,135,137-143).  The 

furnace is  a hollow graphite cylinder electrically connected to a lew 

voltage high current supply.  Several  microli ters of sample solution are 

injected into the furnace through a small  hole in the cylinder.  The 

power supply is  programmed to f irst  dry the sample,  then ash any 

residue,  and f inally atomize the sample.  The absorption signal is  

measured by a photomultiplier tube.  This technique is  rapid; the t ime 

of analysis can be as l i t t le as 30 seconds.  Eleven elements in NBS 
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standard f ly ash (134) and six elements in power plant coal samples (31) 

have been detected with precisions and accuracies similar to the flame 

technique. Analyses using a si l ica furnace (144) and a r . f .  furnace 

(130) have also been performed. A direct  method of analysis for lead in 

ash has been developed using this technique (145).  The sample is  ground 

and mixed with pure graphite powder and placed in a graphite cup. The 

cup is  heated to a temperature which volati l izes and atomizes the lead,  

but not the matrix.  

Mercury,  a highly volati le element,  is  easily lost  during sample 

preparation.  A large number of f lamelcss methods of sample atomization 

have been developed to counteract  this problem (4,51,77,79,80,146-151).  

Most of these methods use a digestion (146-148) or combustion (149,150) 

technique to release the mercury from the sample.  Then the mercury is  

either adsorbed on an appropriate support  and atomized in a furnace 

absorption cell  (146,149,150),  or transported to an unheated absorption 

cell  by an appropriate carrier gas (61,80,147,148,151).  The precision 

and accuracy attained by most of these methods have been better than 

±10%. 

A number of other spectroscopic methods of analysis for individual 

elements in coal and ash samples have been developed. Colorimetric 

methods have been used for the analysis of arsenic (152-156),  mercury 

(77,157),  zinc (158),  boron (80),  lead (159),  and beryll ium (160).  

Fluorimetric methods have been used for the analysis of selenium (80) 

and uranium (161-163).  Precisions and accuracies are generally as good 

as or better than ±10%. 
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7. Specific ion electrodes 

Specific ion electrodes have also been used for the analysis of 

individual elements in coal and ash samples.  The sample is  dissolved 

and an appropriate ionic strength buffer added to the solution.  The 

specific ion activity is  measured by the ion-selective electrode for the 

element of interest  versus a saturated calomel reference electrode.  The 

concentration of the element is  determined by the method of standard 

additions or calibration with standard solutions.  The halogens are the 

elements most often analyzed by this method. Fluorine (61,91,154) and 

chlorine (51) concentrations in NBS coal and power plant coal and ash 

samples have been determined with precisions and accuracies as good as 

±1% (51).  

8.  Anodic str ipping voltammetry 

Anodic str ipping voltammetry is  another electrochemical method 

which has been used for the analysis of individual elements in coal and 

ash samples.  The sample is  dissolved and the solution conditions 

adjusted to allow for the electroanalysis of the element of interest .  

Inert  analytical  and counter electrodes are placed in the solution along 

with a saturated calomel reference electrode.  A potential  is  applied to 

the electrolytic cell  which will  cause electrodeposit ion of the analyte 

onto the surface of the analytical  electrode.  The potential  is  then 

scanned to a value which completely str ips the analyte from the electrode 

surface.  The result ing current (I)  versus potential  (E) curve is  

recorded. The area under this curve is  proportional to the concentration 



www.manaraa.com

23 

of the analyte.  Concentrations are commonly determined using the method 

of standard additions.  Cadmium, lead,  and zinc have been detected in 

power plant f ly ash samples (80) and selenium has been detected in NBS 

standard coal and f ly ash samples (165).  

Other types of analytical  methods which have been used for the 

analysis of individual elements in coal and ash samples are t i tr imetric 

(165-168) and gravimetric (169).  

B. Accuracy of the Analysis of Samples Related to Coal 

and Geological  Materials by Spark Source 

Mass Spectrography 

There are a number of advantages to performing the analysis of coal 

and other types of geological  materials by spark source mass spectro­

graphy (SSMS) (36).  The technique is  multielemental ,  simultaneously 

detecting more elements than INAA (170).  SSMS is  highly sensit ive with 

detection l imits for the elements in geological  matrices ranging from 

5-20 ppb by Weight (35,171).  Also,  SSMS does not exhibit  order of 

magnitude variations in sensit ivity for different elements in the same 

matrix l ike INAA and AAS (172).  Only a small  amount of sample is  needed 

for an analysis,  a minimum of about 10 mg, and the time of analysis per 

element detected is  low (36).  

There are a number of factors which determine the precision and 

accuracy of an analysis by SSMS. The homogeneity of the sample 

electrodes is  important (28,173-177).  Care must be taken not only to 

insure the homogeneity of the sample and sample-graphite mixture,  but 
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also the homogeneity of the internal standard in the electrodes if  the 

doping method is  used (172,178).  Homogenizing methods vary from simple 

grinding and thorough mixing to complex methods of dilution by multiple 

fusion (35,188).  The error due to sample electrode inhomogeneity can be 

less than 5% (35,36,174).  The shape of the sample electrodes should be 

consistent (28,38,179,180).  The spark parameters (e_.£. ,  repeti t ion rate,  

pulse length) and spark gap width should be constant (28,35,38,171,173, 

178,177,179-183).  These parameters affect  the relative elemental  

ionization efficiency in the spark and the ion charge distribution in 

the spark plasma (31,173,178,183).  Generally,  changes in the gap width 

have a greater effect  than does pulse repeti t ion rate and pulse length 

(177).  Use of the ion intensity ratio of the analyte and internal 

standard from the same exposure in determining elemental  concentrations 

can minimize the effect  of spark variations (36).  The effect  of changes 

in the gap width and ion charge distribution can be minimized by 

stabil izing the intensit ies of the matrix l ines (184).  The posit ioning 

of the spark with respect to the entrance sl i t  should be consistent 

(28,177).  The spark posit ion determines what portion of the 

inhomogeneous spark plasma is  sampled by the mass spectrograph (38, 

175-177,179,180).  Other factors concern variations in the ion current 

at  the monitor (177,185) and the spark discharge with t ime caused by 

circuitry instabil i ty,  aging, and other t ime related variations (171, 

184). Also, the vacuum in the ion source should be consistent (28). 

The photoplate should be properly aligned in the focal plane of 

the spectrograph, otherwise there could be a loss of resolution (186, 
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187).  The photoplate emulsion should be consistent across the plate and 

between plates (28,36,171,173,177).  The inhomogeneity of the emulsion 

l imits the analytical  precision to 3-5% (36,173,177).  A reproducible 

procedure for the developing of the photoplates should be used (28).  

Another factor is  the variation in the microphotometer l ine trans-

mittance values (31,175,177).  The spectral  l ine width is  dependent on 

the ion path length in the magnetic analyzer and is  directly 

proportional to the square root of the m/z ratio.  A correction in the 

calculation of ion intensit ies should be made for this phenomenon if  

only peak heights are measured (28,31,36,175,180,185,189,190).  Errors 

caused by l ine width,  space-charge broadening, and other variations in 

l ine shape can be minimized by using l ine area in the calculation of ion 

intensity (173,175,180,186,187).  The l ine transmittances should also be 

corrected for background (28,31,175,190).  The sensit ivity is  l imited 

for low mass ions and the +2 ions of the transit ion metals by the back­

ground fog caused by the sample matrix and the graphite in the electrodes 

(191).  A number of methods of correction for errors caused by spectral  

interferences have been devised (36,172,175,177,178,185,189,192).  The 

sensit ivity of the photographic emulsion is  also dependent on the mass 

and energy of the impinging ions (31,36,173,175).  A number of 

equations have been derived from experimental  observations to correct  

for this emulsion dependence (28).  This characterist ic of the emulsion 

is  discussed more thoroughly in Chapter IV of this dissertation.  

The choice of the internal standard can affect  the precision and 

accuracy (172,175,178,185,190).  A number of cri teria for the selection 
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of internal standards have been published (172,175,178,190).  The 

accuracy of the determination of the relative sensit ivity of this method 

for elements in a certain sample matrix affects the precision and 

accuracy of the analysis (28,31,34-35,38,171-178,180-182,185,188-190, 

192-196).  The relative elemental  sensit ivity is  dependent on the 

elemental  ionization potential  (36,38,172,175,176,180,185,189,192),  

volati l i ty (35,36,38,172,175,176,180,182,185,189,192),  and ionization 

cross-section,  which is  determined by the atomic covalent radius (172, 

175,181,194).  The measure of elemental  volati l i ty normally used is  the 

boil ing point (36),  but melting point (182),  heat of sublimation (185, 

205),  and vapor pressure (187) have also been used. Thermal ionization 

caused by overheating the electrodes can cause variable elemental  

sensit ivity (35,172).  The electrodes can overheat i f  the spark param­

eters are not carefully controlled,  but this effect  can be minimized by 

cooling the electrodes (182).  The elemental  volati l i ty has a greater 

effect  on the relative sensit ivity than the ionization potential  (36,  

172,178,182).  The msthcd is  most sensit ive to volati le elements v. ' i th 

low ionization potentials (e^.£. ,  the alkali  metals) ,  which are most 

subject  to problems with thermal ionization.  The method is  less sensi­

t ive to volati le elements with high ionization potentials (e.2. . ,  

antimony, thall ium, lead) and least  sensit ive to involati le elements 

(£.£. ,  ir idium, zirconium). Some researchers believe that  the ioni­

zation cross-section has a greater effect  on the relative elemental  

sensit ivity than the other parameters (194).  The relative elemental  

sensit ivit ies have been determined by the use of empirical  equations 
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derived from these sensit ivity parameters (185,197,205).  However,  these 

empirical  values can be in error by as much as 40-50% (196).  Another 

method of determining the relative elemental  sensit ivit ies is  by the 

analysis of standard samples (36,171,172,174,175,177,185,190,192,195, 

196,198-204).  The sensit ivit ies are determined by comparison of the 

experimental  values with the "true" values determined by independent 

methods.  The accuracy of this method is  l imited by the accuracy of the 

independent determinations.  The accuracy can be better than ±10% if  the 

spectra of both the unknown and standard sample are recorded on the same 

photoplate (195).  If  good standard samples are not available,  

synthetic standards can be prepared (35,178,189,192).  Pure materials 

are mixed to simulate the sample matrix and this mixture is  doped with 

the elements of interest .  The f inal  mixture is  then thoroughly 

homogenized. Some researchers report  that  the relative sensit ivit ies 

are not dependent on the sample matrix (36,178),  but other researchers 

do report  a matrix dependence (34,35,177,193).  

Coal,  ash,  and other types of geological  materials have been 

analyzed semiquantitatively by SSMS (198,200,206-210).  Corrections for 

relative elemental  sensit ivit ies are not used in semiquantitative 

analysis.  The analytical  results are usually within a factor of three 

of the actual values.  These materials have also been analyzed 

quantitatively by SSMS using methods of correcting for the relative 

sensit ivit ies.  The sample is  often doped with an internal standard.  

The internal standard is  usually an element which has a concentration in 

the sample below the detection l imit  of SSMS for that  element.  The 
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relative elemental  sensit ivit ies are normalized in reference to the 

standard.  Empirical  corrections for relative sensit ivity have been used 

in the analysis of these materials (185).  Corrections based on the 

results of the analysis of well-characterized standard samples (35,171, 

172,175,188,190,199) and synthetic standards (35,178,189) have also been 

used. The internal standard can also be an element already present in 

the sample matrix.  The analytical  results obtained using this method 

of selection of the internal standard can be just  as accurate as those 

results obtained by use of the doping method (190).  Most of the 

analyses of these materials using the undoped method have used 

corrections for sensit ivity based on the analysis of standard samples 

(192,199,202,203).  Other analyses of such materials have been performed 

(18,31,211,212).  The quantitative results have an average accuracy of 

±30% or better,  but the average accuracy can be as good as ±10% for as 

many as 15-20 elements (188).  More than sixty elements can be deter­

mined quantitatively in one analysis (190).  If  fewer than twenty 

c I cnici  I ua a  i c  u i iuuc*c3u \  w y ,  i uupc uiiuuiuii  ooi ' io ua 11 uc uscu uu 

improve the average analytical  accuracy to a value less than ±10% 

(172).  Other analyses of these materials have been performed by 

isotope dilution SSMS (174,197,213).  
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IV. IMPROVEMENTS IN THE ANALYTICAL METHOD OF SSMS 

A. Time of Analysis 

The t ime of analysis per sample should be short  enough to minimize 

spectral  aberrations caused by instrumental  instabil i ty.  Another 

advantage of a short  t ime of analysis is  rapid data acquisit ion.  

However,  the t ime of analysis should be long enough to allow for the 

detection of the ultra-trace elements in a sample.  The t ime of analysis 

can be shortened by increasing the ion current to the maximum level 

before which spectral  aberrations caused by space-charge broadening and 

overheating the sample electrodes become a problem, A rectangular 

aperture,  0.51 x 1.5 mm, was chosen for the anode plate.  This increased 

the ion current to a level greater than that  obtained with a circular 

aperture and also minimized the buildup of sample on the ion beam 

coll imating sl i ts .  This buildup can contribute to instrumental  memory. 

A notch,  which f i ts  over a peg in the ion source,  was cut  into the anode 

-hn, f r\ v* 4- K o r> •» H a m /4 v» on <4 11 4 k 1 f r». 1 3 4- ^ 

in the optical  path of the spectrograph. The spark parameters and 

greatest  exposure level to be used in the analysis of the ash and ashed 

coal samples collected for the research project  were determined by a 

series of experiments.  The repeti t ion rate and pulse length of the 

spark,  and the amount of charge put on the photoplate were varied.  The 

amount of t ime needed to complete the exposure was measured. The sample 

sparked in these experiments was a f ly ash collected from an electro­

static precipitator hopper at  the Iowa State University Power Plant.  
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The experimental  results are reported in Table IV-1. A t ime duration 

Table IV-1. Time of analysis experiments 

Repeti t ion 
Rate (sec" ')  

Pulse 
Length (usee) 

Exposure 
Level (nC) 

Time 
Duration (min) 

100 -  3.2 600 35 
200 12 
70 4 
20 1.2 

300 20 
100 6 

30 2 
10 0.8 

32 -  10 400 49 
100 7 

30 2 
10 0.8 

32 -  32 500 32 
200 12 
70 5 
20 1.2 

for the longest  exposure of no more than 30 minutes was desired.  An 

exposure level of 450 nanocoulombs (nC) for the longest  exposure and a 

repeti t ion rate-pulse length of 100 s"^ -  3.2 ys were chosen because 

450 nC was great  enough to allow for the detection of the ultra-trace 

elements and 100 s"" '  -  3.2 ys provided reproducible sparking conditions 

with minimal spark aberrations and sample overheating (187).  Together 

these choices met the 30 minute t ime duration requirement.  
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Four sample spectra were exposed on each photoplate to minimize the 

cost  of the project  due to the photoplates,  but s t i l l  allow room for a 

sufficient number of exposure levels to cover the desired elemental  con­

centration range in the samples.  Seven exposures per sample f i t  on the 

photoplate.  The seven exposure levels init ial ly chosen, represented by 

the charge on a precision capacitor,  were 450, 150, 30,  10,  3,  0,3,  and 

0.03 nC. However,  the actual exposure levels recorded on the same basis 

when the samples collected for this project  were analyzed were 450, 150, 

30,  10,  15,  1.5,  and 0.15 nC. The changes for the three shortest  

exposures are due to stray capacitances in the monitoring circuitry 

that  were not discovered unti l  after al l  of the samples were analyzed. 

These exposure levels provided a total  t ime of analysis per sample of 

approximately 45 minutes.  

B. Sparking of the Sample 

A high electrical  contact  resistance between the graphite-ash 

sample electrodes and the sample holders can cause soark instabil i ty.  

In some cases,  sparking has even been observed between the metal  sample 

holders and sample electrodes instead of between just  the sample 

electrodes (187).  A method of reducing this contact  resistance was 

developed. The graphite-ash sample mixture was compressed in a poly­

ethylene mold around a 0.5 iïirn diameter purs si lver wire.  The pressure 

applied to the mold by a hydraulic press was 40,000 psi  for a period of 

45 seconds.  The wire supported the sample with approximately 5 mm of 

wire left  exposed to be gripped by the sample holders.  A diagram of the 
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mold and wire is  shown in Fig.  IV-1. The resistance between the sample 

holder and electrode was reduced greatly.  The wire directed the current 

through the sample and sparking was observed only between the graphite-

ash electrodes.  Another advantage of the wire sample support  (214) was 

the greatly reduced chance of breaking the bri t t le compacted graphite 

electrodes when being gripped by the sample holders.  

C. Calibration of the Photographic Emulsion 

The calibration of the photographic emulsion is  an important step 

in the SSMS analytical  procedure.  Any error in the calibration will  

adversely affect  the accuracy of the analytical  results (36,194).  The 

calibration curve is  a plot  of the transmittance of a mass spectral  l ine 

versus the logarithm (log) of the ion intensity.  Historically,  the 

f irst  methods of calibration were graphical .  The "many isotope method" 

uses the measured transmittances of the isotopic l ines from elements 

which have several  stable isotopes (e.3_, ,  Cd, Sn, Os, Hg) plotted 

(215).  A modified "many isotope method" has been developed which 

increases the number of elements available for the construction of the 

curve (178).  The Churchil l  Two-line method uses the transmittance 

ratios of only two isotopic l ines from a single element,  but many pairs 

from different exposures,  to construct a preliminary curve (215).  The 

l ine transmittances of the more abundant isotope are plotted versus the 

l ine transmittances of the less abundant isotope.  The points on the 

preliminary curve are used to construct the calibration curve.  These 
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l ine transmittance points are plotted versus the log (isotopic abundance 

ratio),  which is  a measure of the log (ion intensity).  Only elements 

which have isotopic pairs with the ratio of their  abundances in the 

1.2 to 3 range can be used (38,217).  This method of calibration has 

been used in the analysis of coal and ash samples by SSMS (197,212) 

besides in other work (176,178,183,218-220).  

The calibration curve of transmittance versus log (ion intensity) 

has a l imited l inear portion (38),  A number of methods have been 

developed to extend the l inear portion.  The Seidel transformation (221) 

extends the l inear portion by plott ing the lot  (1/T -  1),  where T is  the 

l ine transmittance,  versus log (ion intensity) to construct the 

calibration curve.  The extension of the l inear portion increases the 

useful working range of the curve (36,185,189,192,220,222).  The McCrea 

transformation (223) extends the l inear portion by plott ing the "reduced 

transmission",  defined as T'  = (T^-T^)/(T^-T^),  where T^^ is  the l ine 

transmittance,  T^ is  the saturation transmittance,  and is  the back-

grouna transmittance,  versus tne log (ion intensity).  The wagner 

transformation (224) extends the l inear portion into the high trans­

mittance range (i .e_. ,  for faint  l ines).  The log[log(l/T)] is  plotted 

versus the leg (ion intensity) to construct the calibration curve.  

Mathematical  formulae have been derived to describe the calibration 

curve.  These formulae are especially useful for computer application 

(38).  The Hull  equation (225) is  derived empirically.  I t  takes the 

form: 
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1 1 -  T. 
log (ion intensity) = h- l o g  ( = ? — -  l o g  k  ( I V - 1 )  

£" s  

or 

1 -  T. 
^ (IV-2) 

"'"s l  + [k(ion intensity)]^ 

where is  l ine transmittance and is  saturation transmittance.  The 

parameter R is  a measure of the slope of the curve and the constant k 

is  a measure of the sensit ivity of the emulsion. The parameters R and 

T^ permit  a least-squares f i t  of the formula to experimental  trans­

mittance values.  The Hull  equation has been shown to be quite useful 

in SSMS work (198,226-230) and an improvement over other methods of 

calibration (231,232).  The Kinoshita equation (233) is  derived 

theoretically.  I t  takes the form: 

T^ = 1 -  [1 -  Tg(l  -  e"9(Ton intensity))]  (iV-3) 

where q is  the mean cross-section of the si lver halide grains.  The 

equation is  mainly useful for faint  l ines (38).  The Franzen-Maurer-

Schuy equation (44) is  derived theoretically and is  based on the 

Kinoshita equation (38).  I t  takes the form: 

1 - T  1 / V  
log (ion intensity) = log[(y ) -1] -  log w/s j  ^ (IV-4) 

I  s  ^  s '  

or 

1 - Ts 

'  ̂s ^ f-i  ,  e( ion intensity) xV (IV-5) 
^ V(1 -  Tg) J 
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where e  is  a measure of the sensit ivity of the emulsion and V is  a 

measure of the slope of the calibration curve.  This equation is  useful 

over the entire range of the calibration curve (38,195).  

These methods of calibration all  have both advantages and dis­

advantages.  The "many isotope method" can be used only if  at  least  one 

of the useful elements is  in the sample with a sufficiently high 

concentration (38).  The Churchil l  method uses only one element to 

determine the curve (234) and does not take into account the dependence 

of the emulsion response to ion mass (38,195,217),  l ine width variation 

with ion mass (217),  emulsion and background variations across the 

photoplate (38,195),  instrumental  mass discrimination (38),  and errors 

in tabulated isotopic abundance values (38,195).  Small  errors in the 

measurement of the ion intensity ratios can be magnified to the tenth 

to twentieth power (195).  However,  one advantage of this method is  that  

i t  does not presuppose the shape of the calibration curve l ike the 

methods based on mathematical  formulae do (217).  The l inearization 

Lr aribTur i i iâLiùiib ar  e  yetieràl  ly ubcTul ujr  uii ly 1 imi Leu becLiOriS of Lnt 

curve (38).  The Hull  equation has a number of advantages.  I t  uses 

much more data to construct the calibration curve than used by the 

graphical  methods (195),  the magnitude of the working range of the 

curve is  1000 (231),  the equation is  useful in computer applications 

(38,195,235),  but the equation is  useful for only singly charged ions 

(38).  The Kinoshita formula includes a number of theoretical  factors,  

but is  useful for only faint  l ines (38).  The Franzen-Haurer-Schuy 

formula also has a number of advantages l ike the Hull  and Kinoshita 
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formulae (38,235).  This formula uses a large quantity of data to 

construct the calibration curve,  includes a number of theoretical  

factors,  is  useful in computer applications and for singly and multiply 

charged ions,  and the working range extends over the entire curve.  

The method of emulsion calibration chosen for the research project  

described in this dissertation was a computer application of the 

Franzen-Maurer-Schuy formula.  The steps in the calibration procedure 

were:  

1.  Set the value of T^ to 0.005. 

2.  Calculate V from the transmittance values for each isotopic 

pair  using the Franzen-Maurer-Schuy formula.  

3.  Average the values of V for the pair .  

4.  Calculate the isotopic abundance ratio using the Franzen-

Maurer-Schuy formula for each pair  using the average 

value of V. 

5.  Compare the calculated ratio to the actual ratio for each 

pair  and calculate deviations.  

5.  Average the deviations,  

7.  Increase and decrease T^ by steps and repeat the procedure 

for each step unti l  a minimum average deviation is  found. 

The value of T^ and average V which produce the minimum average 

deviation are the saturation and slope parameters for the photoplate.  

Thirty-one photoplates from the same batch containing the mass spectra 

for the ash and ashed coal samples analyzed for this research project  

were calibrated.  The isotopic pairs selected for the calibration were 
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63,65cu+2, 135,137B,+2, 90,912^+1, 135.138ga+T, 136,138%,+!,  ,^4 

137 138 +1 
'  Ba .  These pairs were selected because of their  freedom from 

spectral  interferences and each ratio of their  abundances was greater 

than 1.5 but less than 20. The transmittance values of the spectral  

l ines used were at  least  20% darker than background (i-e^. ,  Tj^ = 80%, 

faintest  T^ measured was 50%). Also,  a few transmittance values close 

to saturation were used to better approximate T^. Emulsion variation 

between plates of the same batch has been shown to be sl ight when 

compared to other sources of error in the calibration procedure (176, 

185,218,219,236).  The data from the 31 photoplates were combined for 

each isotopic pair .  The data for the three pairs were combined 

because of the close proximity of the spectral  l ines.  The data for 

each set  of pairs were averaged and "bad data" were excluded using the 

Chauvenet cri terion for rejection (237).  The calibration results are 

reported in Table 17-2.  The increase in V and the sl ight increase in 

Tç with increasing m/z ratio are surprising.  The increase in V 

Table IV-2. Photoplate calibration results 

Cu+2 Ba+2 Zr+T Ba-

Av. V 1.073 1.385 1.652 2.275 

% rel .  std.  dev. 8.0 2.5 7.1 22.1 

Av. T^ 0.0067 0.0077 0.0080 0.0084 

Range 0.004- 0.006- 0.005- 0.006-
0.009 0.010 0.011 0.011 
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indicates an increase in the slope of the calibration curve with 

increasing m/z ratio (38).  The sl ight increase in indicates that  

the dependence of on the m/z ratio is  minor.  These results 

contradict  the results reported by other researchers (46,47,176,222, 

224,227,230,235,238,239).  These researchers found an overall  decrease 

in slope and a significant increase in T^ for increasing m/z rat ios.  

Their  results indicate an overall  decrease in the sensit ivity of the 

emulsion with increasing m/z rat io while the results reported here 

indicate an overall  increase in sensit ivity.  

To verify the results,  the calibration curves for the four sets 

of isotopic pairs were constructed using the Churchil l  method (216).  

The curves are shown in Fig.  IV-2. The curves do verify the overall  

increase in slope and the relative insignificance of the sl ight increase 

in T^. The average value of V increases l inearly with (m/z)^'^ as 

defined by; 

V = (8.60 X lCr4)(m/z)T'S + 0.905 (IV-5) 

A theoretical  explanation of the observed increase in sensit ivity with 

increasing m/z ratio is  provided by interactions between energetic ions 

and matter observed in nuclear and radiochemistry (240).  The 

penetration of an ion into a substance is  directly proportional to i ts  

momentum, but inversely proportional to the square of the charge on the 

ion.  The greater the penetration of the ion into the photographic 

emulsion, the more sensit ive the emulsion is  to the detection of that  

ion and the greater the value of V. For SSMS work, these quantit ies 

can be stated mathematically by: 
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Figure IV-2. Photoplate calibration curves [Churchil l  method) 
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mv = momentum of ion 

2 z = coulombic force 

Pz = kinetic energy of 
potential  

where P is  the acceleration 

mv (IV-7) 

The value of P is  constant for al l  of the ions formed in the ion 

source,  thus:  

Fig.  IV-3. These plots i l lustrate that  this theoretical  explanation 

for the observed increase in V with increasing m/z ratio is  valid.  

Equation IV-6 was used to determine the value of V to be used in the 

calculation of the intensity of each ion using the Franzen-Maurer-

Schuy formula.  The quantity T^ was set  equal to 0.008 for all  of the 

ions because of the insignificance of i ts  variation across the photo-

plate.  This insignificance is  shown by the ranges of T_ for each set  

of isotopic pairs in Table IV-2. The ranges of T^ values covered by 

al l  of the sets of pairs are nearly the same. 

(IV-8) 

The average values of V are plotted versus (m/z)^'^ and (mv/z)" '*^ in 



www.manaraa.com

42 
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Figure ÎV-3. Dependence of V on ion mass and energy 
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V. ANALYSIS OF STANDARD AND IOWA STATE UNIVERSITY 

POWER PLANT COAL AND ASH SAMPLES BY SSMS 

A. Experimental  

1.  Instrumentation 

The analyses of the coal and ash samples collected for this project  

were performed using a GRAF 2.2 spark source mass spectrograph 

manufactured by Nuclide Corp.,  State College,  PA. The instrument was 

modified here for automatic control  of the spark and i l lumination angle 

of the ion optical  axis.  The photographic plates used to record the 

mass spectra were IIford Q-2 plates manufactured by I lford Ltd. ,  

Manchester,  U.K. The mass spectral  l ines were read with a micro-

photometer manufactured by Jarrell-Ash Co.,  Newtonville,  MA, Model 

#2100. The analytical  data were processed by a LSI-11 microprocessor 

computer system. 

2.  Sampling procedure 

The Iowa State University Power Plant burns a mixture of high-sulfur 

Iowa coal and low-sulfur Colorado coal to meet the sulfur emission 

standards of the Environmental  Protection Agency (EPA) with minimal fuel  

costs.  The Iowa and Colorado coals are shipped from mines located near 

Lovilia,  Iowa, and Craig,  Colorado, respectively.  The plant has six 

boilers and arrangements were made for the collection of coal and ash 

samples from boiler #4.  Boiler #4 is  a spreader-stoker unit  in which 

approximately 40% of the ash left  after combustion is  carried cut of the 
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combustion zone with the f lue gas (241).  The remaining 60%, the heavy 

ash fraction,  falls  below the boiler grates as bottom ash.  The f ly ash 

f irst  encounters a primary dust  collector (PuC),  which is  approximately 

85% efficient,  and then an electrostatic precipitator (EP),  which is  

approximately 97% efficient.  The relative distribution of the total  ash 

collected is  approximately 60% bottom ash,  34% primary dust  collector 

f ly ash,  and 6% electrostatic precipitator f ly ash.  The plant burned 

only the Iowa coal in this boiler during August,  1979, and only the 

Colorado coal during September,  1979. The schedule for the collection 

of the coal and ash samples is  reported in Table V-1. Twelve samples 

were collected for each type of sample.  

Procedures used for the collection of the Power Plant samples and 

their  preparation for analysis were according to American Society for 

Testing and Materials (ASTM) standard test  methods (242,243).  The 

sampling method used for the raw coal was adapted from test  method 

D2234-75. The top size of the coal entering the boiler was less than 

50 mm. so 35 increments;  weighing 3 kg each; were collected per sample.  

The increments were combined and the size of the gross sample was reduced 

using a procedure adapted from test  method D2013-72. The gross sample 

was coned and quartered down to a weight of 12 kg. The sample was 

crushed using a jaw crusher to a size which would pass through a No. 4 

sieve.  The size of the sample was reduced using a r iff le to a weight of 

4 kg and then the sample was ground using a face grinder to a size which 

would pass through a No. 20 sieve.  The size was then reduced to a weight 

of 500 g and the sample was ground again to a size which would pass 
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Table V-1. Schedule for power plant sampling 

Sample Date No, of samples 
type sampled collected 

Iowa Coal 8/15/79 4 
8/16/79 4 
3/17/79 4 

Bottom Ash 8/15/79 4 
8/15/79 4 
8/17/79 4 

Fly Ash-PDC 8/15/79 4 
8/15/79 4 
8/17/79 4 

Fly Ash-EP 8/15/79 4 
8/16/79 4 
8/17/79 4 

Colorado Coal 9/19/79 4 
9/20/79 4 
9/21/79 4 

Bottom Ash 9/19/79 4 
9/20/79 4 
9/21/79 4 

Fly Ash-PDC 9/19/79 4 
3/fU//3 4 
9/21/79 4 

Fly Ash-EP 9/19/79 4 
9/20/79 4 
9/21/79 4 
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through a No. 60 sieve.  The sample was r iff led to a f inal  weight of 50 g.  

All  of the ash samples were collected using a procecure adapted from test  

method C311-77. The ash samples were collected from their  respective 

hoppers in one-li ter  polyethylene bott les.  The gross sample weight was 

at  least  2 kg. The size and weight of the samples were reduced using the 

same procedure used for the coal samples.  

Eleven standard coal samples were acquired from sources and 

locations reported in Table V-2. These samples were selected because 

they come from different and diverse geographical  areas and their  trace 

elemental  concentrations cover a broad range of values.  One standard 

ash sample (SRM 1533) was acquired from the National Bureau of Standards 

(NBS). Large amounts of organic material  in samples analyzed by SSMS can 

adversely affect  the analytical  results (201,244,245).  The ashing method 

selected for the coals was low-temperature ashing (LTA) (245-249).  The 

samples are placed in Pyrex boats which are placed inside the ashing 

chambers.  A high frequency electromagnetic f ield,  produced by a radio 

t .  « « N  w  / - s  ^  T  1  o c  «  f - k o  c s m n l o c  T h o  p  v * o  

evacuated and dry oxygen gas enters the chambers.  The oscil lator is  

turned on and the f ield produces a reactive oxygen species which oxidizes 

the organic material .  The chambers are pumped to remove the reaction 

products and maintain a fresh supply of oxygen. The temperature of the 

sample usually does not exceed 200'C because the oxidizing process is  a 

slow chemical reaction (245,247).  A dry ashing method was chosen because 

reagents used in wet ashing methods can add contaminants to the samples 

(250,251).  This low-temperature method was chosen because the majority 
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Table V-2. Standard coal samples 

Source Sample No. Origin Location 

National Bureau of Standards SRM 1632-coal 
SRM 1635-subbituminous 

coal 

I l l inois State Geological  Survey CI3464 
C16030 
CI 6408 

United States Geological  Survey PAS16 
PAS47 

D160984 
0165578 
D165762 
D165766 

Herrin #6 
Herrin #6 
Chapel #8 

Will iamson County,  IL 

Upper Freeport  Bed Westmoreland County,  PA 
Pit tsburgh Bed Washington County,  PA 

Wyodak Anderson Bed Campbell  County,  WY 
Beulaii  Bed 
Pust  Bed 
Pust  Bed 

Mercer County,  ND 
Richland County,  MT 
Richland County,  MT 
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of elements of interest  are not lost  by diffusion or volati l ization and 

the sample ^s less l ikely to be contaminated by the atmosphere or sample 

container than when high-temperature methods are used (61,251).  This 

ashing method is  useful for analyses performed by SSMS (251).  A 

disadvantage of this method is  the need for periodic st irr ing of the 

samples to ash them completely (248).  The oxidation reaction occurs only 

on the surface of the sample and the t ime needed to complete the ashing 

is  relatively long. All  of the standard coal and Power Plant coal and 

ash samples were ashed to remove the majority of the organic material .  

All  of the ashed samples were crushed using a boron carbide mortar and 

pestle to a size which would pass through a No. 170 sieve and thoroughly 

mixed using a vibrating mixer/mill .  The samples were stored in 30 ml 

polyethylene bott les.  

3.  Analysis procedure 

The samples were selected at  random for analysis.  Equal weights of 

the sample and spectroscopically pure graphite,  manufactured by National 

Carbon Co.,  New York, NY, Grade SP-1, were mixed using a vibrating 

mixer/mill .  Electrodes were formed from the sample-graphite mixture and 

sparked using the same procedures described in Chapter IV of this 

dissertation.  
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B, Results and Discussion of the Analysis of the 

Standard Samples 

As stated in Chapter I ,  the sensit ivity of the SSMS method of 

analysis is  not the same for al l  of the elements.  This difference in 

sensit ivity can be corrected for by applying a sensit ivity coefficient 

to the analytical  results.  The elemental  values of the coefficients are 

calculated relative to that  of an internal standard which is  given a 

coefficient of 1.0.  The elemental  relative sensit ivity coefficients 

(RSC) are calculated using: 

(ppma )(ATWT )(ppmw^.) 

"  (ppma^td)(ATWTg^j)(ppmw^) ^ 

where ppma^ and are the concentrations of element X and the 

internal standard,  respectively,  determined by SSMS in units of ppm 

atomic,  ATWT^ and ATWT^^^ are the atomic weights of element X and the 

internal standard,  and ppmw^ and ppmw^^^ are the concentrations 

expressed in units of ppm by weight.  To determine tne RSC values for 

the elements of interest  in a particular sample matrix,  well-

characterized standard samples with a similar matrix must be available.  

The RSC values for 62 elements in ashed coal and ash were calculated 

using the analytical  results from the SSMS analysis of the standard 

coal and f ly ash samples described earl ier  in this chapter and the ppm 

by weight values reported by the sources of the standards.  Some 

requirements which the selected internal standard should satisfy are 

1187):  
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1. The element should be homogeneously distributed throughout 

the sample.  

2.  An independent method which is  capable of accurate analysis 

of the element should be available.  

3.  The elemental  concentration should be representative of 

the trace elemental  concentrations in the sample.  

4.  The elemental  concentration should be such that  rress 

spectral  l ines with transmittance values on the l inear 

portion of the calibration curve are available.  

5.  The elemental  l ines should have no spectral  interferences.  

6.  The mass spectral  l ines should appear in regions of the 

photoplate with minimal background fog.  

7.  The element should be multi isotopic and have multiply 

charged l ines available for obtaining accurate 

analytical  results.  

8.  The element should be representative of the different 

groups of the periodic table.  

9.  The element should have a vapor pressure representative 

of the elements in the sample.  

10.  The element should be representative of the different 

chemical species in the sample.  

11.  In the case of coal and ash samples,  the element should 

be representative of the elemental  organic-inorganic 

affinit ies.  
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No one element can satisfy all  of these requirements.  Three elements 

were selected for use as internal standards,  Cu, Zr,  and Ba. All  three 

are multi isotopic with singly and multiply charged spectral  l ines which 

are free of interferences and appear in good regions of the photoplate.  

Barium is  the most volati le and has the highest  organic affinity (91) of 

the three.  Copper is  intermediate in both cases and zirconium is  

refractory ana present in the mineral  phase of the coal.  

The average elemental  RSC values based on Cu as the internal 

standard,  the relative standard uncertainty in the averages,  and the 

number of analyses from which the averages were determined are reported 

in Table V-3 for the ashed coal and ash matrices.  One analysis of each 

of the eleven coal standard samples and f ive analyses of the one f ly ash 

standard sample were performed. The average values were calculated,  

"bad data" were excluded on the basis of the Chauvenet cri terion for 

rejection,  and then final  average values were computed. No RSC values 

are reported for S and CI because of their  variable loss during the 

ashing of the coal samples (61,199,248).  The RSC values from tne 

analyses of the f ly ash were used for these elements in the subsequent 

analyses of ashed coal samples.  The RSC values from the analyses of the 

f ly ash were also used for Sn, Lu, Hf,  Ta,  and W in subsequent analyses 

because none of the sources of the standard coal samples reported 

concentrations for these elements.  The RSC values reported for Pr,  Sm, 

Gd, and Er are based on the values for Nd and Dy, and the values for Ho 

and Tm are based on the values for Eu and Tb because of the lack of 

concentrations reported by the sources for these elements.  The RSC 
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Table V-3. Relative sensit ivity coefficients (RSC) using Cu as internai 
reference 

Coal Fly Ash 

Element RSC % Rel.  s td.  No. of RSC % Rel.  s td.  No. of 
uncertainty analyses uncertainty analyses 

Li 2.2 28 7 11 41 5 
Be 11 40 4 40 29 3 
B 0.71 10 11 1.6 19 4 
F 0.25 23 9 1.8 11 4 
Na 1.5 11 9 2.0 16 5 
Mg 0.55 5 8 0.84 20 5 
A1 0.44 15 11 0.94 13 5 
Si 0.57 5 9 0.91 15 5 
P 0.89 25 9 0.44 57 5 
S 0.88 16 5 
Cl — 1.9 15 4 
K 1.5 7 6 1.8 11 5 
Ca 1.5 4.5 10 2.0 16 5 
Sc 1.1 5 8 1.1 12 5 
Ti 0.52 12 10 0.57 17 5 
V 0.73 13 11 1.0 9 5 
Cr 1.5 12 10 1.4 5.4 4 
Mn 1.8 13 10 2.0 10 5 
Fe 0.59 12 10 0.78 9 5 
Co 0.58 5.4 9 1.0 10 5 
Ni 1.6 19 8 0.75 6.6 4 
Cu 1.0 1.0 — 
Zn 1.7 7 9 4.2 15 5 

1 n  O A C 1  C  1  C  r 

Ge 2.8 36 " 5 11 4 
As 1.9 11 10 1 .7 12 5 
Se 1.4 20 11 2.8 10 5 
Br 0.022 2.5 5 1.3 10 5 
Rb 1.4 22 4 2.1 n 4 
Sr 0.22 5.4 6 0.83 20 5 
Y 0.73 6.4 7 0.81 10 5 
Zr 0.28 13 9 0.62 8 5 
Mo 0.66 21 9 1.3 26 5 
Cd 1.9 8.5 5 2.7 8 5 
Sn 1.2 18 5 
Sb 1.4 15 11 1.7 8 4 
I  0.77 25 3 2.2 10 4 
Cs 2.0 15 3 3.5 22 5 
Ba 0.35 11 10 0.70 15 5 
La 0.17 8 8 0.54 13 5 
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Tab le  V-3 .  (Cont inued)  

Coal Fly Ash 

Element RSC % Rel.  s td.  No. of RSC % Rel.  s td.  No. of 
uncertainty analyses uncertainty analyses 

Ce 0.1? 10 5 0.61 15 5 
Pr 0.43 24 1.3 19 — 

Nd 0.34 34 2 1.0 21 5 
Sm 0.45 24 — 1.3 22 5 
Eu 1.4 23 5 2.7 20 5 
Gd 0.45 24 1.5 19 5 
Tb 1.4 14 4 1,9 31 4 
Dy 0.53 31 3 1.6 20 5 
Ho 1.4 8 3.6 20 5 
Er 0.45 24 1.4 19 — — -

Tm 1.4 13 — — — 1.6 24 5 
Yb 1.4 21 4 1.2 31 5 
Lu — — — 1.2 27 4 
Hf — — — 0.95 30 5 
Ta — — — — — — 0.50 28 4 
W 1.2 27 5 
Hg 1.3 19 3 6.5 22 — — • 

T1 3.0 18 3 4.3 15 5 
Pb 0.71 10 6 2.1 14 5 
Bi 1.0 7 1.8 24 4 
Th 0.80 17 6 1.9 14 4 
U 1.4 11 8 2.2 11 4 
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values for these rare earths should be similar to those for Nd and Dy, 

and Eu and Tb (180).  The RSC value for Bi in the coals is  based on the 

values for Pb, Th, and U because of i ts  physical  similari ty to these 

other high-mass elements and again no concentrations for this element 

were reported by the sources.  The RSC values for Pr and Er in the f ly 

ash are based on the values for Nd, Gd, and Dy for the same reasons as 

stated previously for the coals.  The RSC value for Hg is  based on 

experimental  observations of in-house analytical  measurements and the 

compilation of observations by other laboratories (187).  The standard 

uncertainties for Li and Be are relatively high because they are mono-

isotopic and have only one mass spectral  l ine located in a region of the 

photoplate with high background fog and subject  to spectral  aberrations.  

The uncertainties for B, F,  Na, and Mg are relatively high because of 

the high background fog. The uncertainty for P is  high in the coals 

because of i ts  variable loss during ashing (250) and in the f ly ash 

because i ts  concentration is  not well  known (253).  Inhomogeneity may be 

the reason for the relatively high uncertainties for Ni and Rb in the 

coals,  Sr in the f ly ash,  and Mo in both.  Variable losses during 

ashing may be a reason for the high uncertainties for Ge and Se in the 

coals because of their  association with the organic fraction (91).  

Inhomogeneity may also be a problem. The uncertainty for Sn may be high 

in the ash because of i ts  low concentration.  The uncertainty for I  is  

high in the coals because of i ts  variable loss during ashing (61,199, 

245,251,254).  The uncertainty for Cs is  relatively high in both the 

coals and f ly ash because i ts  volati l i ty and low f irst  ionization 
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potential  makes i ts  behavior during sparking erratic.  The uncertain­

t ies for the rare earths in the coals and ash are high possibly because 

of inhomogeneity and their  low concentrations.  The uncertainty for Hg 

is  high because of i ts  loss during ashing (51,199,246,249,251,254) and 

erratic behavior in the spark due to i ts  volati l i ty.  The uncertainties 

for T1 and Bi may be high because of their  low concentrations and the 

volati l i ty of T1. 

The plots of the precision of the elemental  RSC data versus the 

logarithm (log) of the elemental  concentration are shown in Figs.  V-1 

and V-2 for the coal and f ly ash standard samples.  As expected,  the 

precision,  is  worst  at  low and high concentrations with the best  

precision obtained for concentrations near 100 ppm. The precision is  

better than ±30% for elemental  concentrations ranging from 5 to 2500 ppm 

in the standard coal samples and better than ±20% for concentrations 

ranging from 10 ppm to 1% in the standard f ly ash sample.  The 

precisions are generally better for the f ly ash than the coals,  probably 

u c v a u a c  u i  u i i c  u c u u c :  i i u i i i v y c i i c  :  u j r  u  i  t t i c  z > c i m y  i  c .  

C. Results and Discussion of the Analysis of the 

Power Plant Samples 

The concentrations for 52 elements in the Iowa and Colorado coal,  

bottom ash,  f ly ash-PDC, and f ly ash-EP were calculated using a 

rearrangement of Equation V-1: 

(ppma )(ATWT )(ppmw , . )  

™x = (PP^4,)(AT'^,t ,)("4) I ' ' ' - ' )  
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Figure V-l .  Precision of RSC values ys^.  log (concentration) for coal standard samples 
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Figure V-2. Precision of RSC values vs^. log (concentration) for fly ash standard sample 



www.manaraa.com

58  

The RSC values based on the coal standard samples and ash standard 

sample were used to calculate the elemental  concentrations in the coal 

and ash samples,  respectively.  The concentrations of the three 

internal standards were determined independently by wet chemical 

methods.  Copper and barium were determined by flame atomic absorption 

and zirconium was determined spectrophotometrically.  One of the 

twelve samples from each of the eight types of sample was analyzed for 

Cu, Zr,  and Ba. The results of these analyses are reported in Table 

V-4. Samples from the Iowa and Colorado coals are abbreviated lA and 

CO, respectively.  

Elemental  concentrations were calculated based on each of the 

three internal standards.  The calculations resulted in 12 concen­

trations for an element in the Iowa coal,  bottom ash,  f ly ash-PDC, f ly 

ash-EP, Colorado coal,  bottom ash,  f ly ash-PDC, and f ly ash-EP based on 

the Cu, Zr,  and Ba internal standards for each of the 62 elements.  The 

concentrations for each population of 12 were averaged and "bad data" 

were excluded on the basis of the Chauvenet cri terion for rejection.  

The average concentration for an element based on one of the internal 

standards was compared to the averages based on the other two internal 

standards using the t- test  for the consistency of two means at  the 95% 

confidence level (237).  Details  of the computer program which 

performed these calculations and a complete l ist ing of the results are 

not given here because of the large volume of the program and data 

l ist ings.  The reader may contact  Professor Harry J .  Svec,  21 Gilman, 

Iowa State University,  Ames, Iowa 50011, for details .  
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Table V-4. Results of wet chemical analysis 

Sample Cu 
(ppmw) 

Zr 
(ppmw) 

Ba 
(ppmw) 

lA coal 35 132 248 
CO coal 38 134 346 

lA bottom ash 65 229 225 
CO bottom ash 133 181 517 

lA f ly ash-PDC 50 212 265 
CO f ly ash-PDC 79 237 181 

lA f ly ash-EP 224 322 462 
CO f ly ash-EP 296 485 538 
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The elemental  precisions for the Power Plant samples were combined 

with those for the coal and ash standard samples to make a comparison 

between the values based on the three internal standards.  The results 

are reported in Table V-5. Approximately 50% of the elemental  

precisions based on Cu end Zr are better than ±30%, but less than 25% 

of the values based on Ba are better than ±30%. A possible explanation 

is  that  the Ba in the samples is  not homogeneously distributed.  This 

poor homogeneity diminishes the usefulness of Ba as an internal 

standard for these analyses.  Also,  upon further study, i t  was 

discovered that  the dissolution of these types of samples for the wet 

chemical analysis of Ba can be problematic (137).  More than 10% of the 

Ba remains in the residue left  after dissolution.  The homogeneity of 

the Cu appears to be sl ightly better than that  of the Zr.  The results 

of the t- test  comparisons indicated that  in many cases the elemental  

concentrations based on Zr were not of the same population as those 

based on Cu. A possible explanation is  that  the amount of Zr in the 

samples suomitted for wet chemical analysis was close to the detection 

l imit  (10 i jg/50 ml.)  of  the spectrophotometric method (252).  The amount 

of Cu in the samples was sufficiently above the detection l imit  of the 

flame atomic absorption method so the accuracy of i ts  analysis which 

is  better than 5% (252) was not questioned. The results of the SSMS 

analysis for Zr based on Cu as the internal standard and the wet 

chemical analysis are reported in Table V-6. The wet chemical results 

are higher than the SSMS results in every case indicating that  Zr is  

not as suitable as Cu for use as an internal standard in these 
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Table V-5. Comparison of precisions of SSMS analysis between Cu, Zr,  
and Ba internal references 

Cu Zr Ba 

Range of No. of % of No. of % of No. of % of 
precision elemental  total  elemental  total  elemental  total  

(%) precision precision precision 
values values values 

< 10 67 11 32 5 6 1 

< 15 128 22 104 18 31 5 

< 20 194 33 162 27 59 10 

< 25 252 43 220 37 93 16 

< 30 311 53 280 47 136 23 

Table V-6. Comparison of wet chemical and SSMS results,  using Cu as 
internal reference,  for concentration of Zr 

C 1 ̂  ir^a. CCMC or -J4-C 
o a i i i u  I  c  i r « c  L  o o i ' i o  /o j \ c  i  •  u  i  i  •  

chemical (ppmw) 
(ppmw) 

lA coal 132 121 9 
CO coal 132 131 2 

lA bottom ash 229 217 6 
CO bottom ash 181 157 15 

lA f ly ash-PDC 212 211 0 
CO f ly ash-PDC 237 226 5 

lA f ly ash-EP 322 283 17 
CO f ly ash-EP 485 378 28 
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particular analyses.  The failure of Ba and Zr to be suitable as 

internal standards precludes any correlations between the three 

selected internal standards and elements with similar properties and 

organi c-i  norgani c affini  t i  es.  

The average elemental  concentrations and relative standard 

uncertainty in the averages are reported in Table V-7 for the Iowa coal 

samples and Table V-8 for the Colorado samples.  The values for 53 of 

the elements are based solely on Cu as the internal standard,  the 

values for the other 9 are averages of the results based on both Cu and 

Zr.  These nine elements and the relative precision of their  RSC values 

based on Cu and Zr are l isted in Table V-9. The precision of the RSC 

values based on Zr is  much better than that  for the values based on Cu 

so the concentrations based on Zr are combined with those based on Cu 

and the average values are used. The standard uncertainties for Li,  

Be, B, F,  P,  and S are relatively high for the same reasons stated 

previously in the discussion of the RSC values.  All  of the Power Plant 

samples were ashed so the standard uncertainties for the halogens are 

high because of their  variable loss during ashing (51,199,251,254),  and 

particularly for the bottom ash because of their  low concentrations in 

that  type of sample.  The uncertainties for Ni and Ge in the coals are 

high for the same reasons stated previously in the discussion of the 

RSC values.  The uncertainties for Zn are high because i t  is  not 

distributed homogeneously in these types of samples (199),  and only one 

irass spectral  l ine is  free of interferences.  The high uncertainty for 

As in the Colorado f ly ash-PDC is  caused by three concentrations being 
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Table V-7. Results of SSMS analysis of Iowa Power Plant samples '  

Element 

Li 
Be 
B 
F 
Na 
Mg 
A1 
Si  
P 
S 
Cl 
K 
Ca 
Sc 
Ti 
V 
Cr 
Mn 
Fe 
Co 
Ni 
Ou 
Zn 
Ga 
Ge 

Who 1 e 
coal 

% Rel.  s td.  
uncertainty 

1.42 
0.52 

2 6 . 1  
30.4 

130 
339 

0.370% 
1.36% 

145 
0.958% 
4.19 

567 
0.718% 
1.53 

258 
7.61 
5.85 

58.0 
1.01% 
3.08 

15.4 
6 . 0 6  

158 
1.50 
6.04 

25 
30 
15 
13 
8 
6 
7 
4 

10 
20 

9 
10 

3 
7 
5 
6 

12 
5 
6 
7 

13 

27 
9 

12 

Bottom 
ash 

Iowa Coal 

% Rel.  s td.  
uncertainty 

Fly ash 
PDC 

% Rel.  s td,  
uncertainty 

Fly ash 
EP 

% Rel.  s td.  
uncertainty 

6.19 
3.22 

399 
20.5 

2180 
4880 

3.40% 
12.9% 

3690 
3.34% 

14.7 
7340 

7.03% 
14.0 

2460 
56.2 
56.6 

824 
1 1 . 2 %  
1 6 . 2  

198 
49.1 

485 
13.7 
32.8 

21 
30 
21 
21 
8 

10 
10 

5 
18 
17 

8 
7 
5 

11 
7 
9 

10 
5 
4 
5 
9 

20 
11 

6 

5.91 23 7.54 25 
1.76 37 2.27 38 

292 12 375 11 
21.9 16 43.0 17 

953 8 2710 21 
2690 7 7460 6 

2.19% 6 4.28% 6 
13.3% 5 7.41% 6 

2910 18 4390 19 
0.862% 13 3.96% 21 

22.2 14 35.4 20 
7710 7 8570 6 

3.67% 5 2.36% 5 
11.0 7 22.7 6 

2560 6 4020 6 
51.0 7 147 6 
48.3 9 64.1 6 

419 7 118 4 
4.76% 4 4.82% 4 

17.0 5 47.9 4 
122 8 376 5 

32.7 — — — 174 ---

611 14 7560 6 
13.8 8 204 5 
47.0 4 481 4 

^All  concentrations in units of ppm by weight unless indicated otherwise.  
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Table  V-7 .  (Cont inued)  

lenient Whole % Rel.  s td.  Bottom 
coal uncertainty ash 

As 6.57 7 22.1 
Se 2.15 9 7.07 
Br 19.9 9 2.77 
Rb 4.03 15 43.1 
Sr 42.9 10 197 
Y 7.54 4 62.3 
Zr 20.9 5 164 
Mo 1.65 9 5.03 
Cd 0.63 18 3.10 
Sn 0.36 14 5.73 
Sb 0.49 9 1.50 
I 1.12 11 0.87 
Cs 0.34 14 1 .81 
Ba 37.0 10 341 
La 5.67 12 29.3 
Ce 15.1 11 53.7 
Pr 1.17 13 4.54 
Nd 7.87 13 29.2 
Sm 2.21 11 7.64 
Eu 0.31 8 2.52 
Gd 2.13 12 8.62 
Tb 0.18 15 1 .813 
Dy 1.48 15 5.59 

Ho 0.15 11 0.79 
Er 0.66 12 1.97 
Tm 0.06 11 0.58 
Yb 0.15 17 1.64 

Iowa Coal 

% Rel.  s td.  Fly ash % Rel.  s td.  Fly ash % Rel.  s td.  
uncertainty PDC uncertainty EP uncertainty 

8 61.0 5 508 6 
7 2.60 7 14.1 4 

20 2.15 7 2.32 14 
10 35.2 13 60.1 11 
14 119 10 317 8 

7 44.8 8 113 7 
4 138 4 220 6 

13 4.98 9 21.2 9 
20 5.01 4 112 4 
12 3.29 8 25.1 13 

6 2.49 5 44.8 4 
16 1.72 10 3.88 7 
15 1.81 19 6.84 14 
15 191 6 508 15 
13 23.8 9 49.4 6 

12 44.9 9 113 10 
11 3.74 10 8.34 10 

9 28.5 7 65.5 7 
17 7.64 14 16.4 8 

14 2.02 11 2.44 10 
18 7.84 9 14.1 9 

13 1.93 12 1.64 11 
21 4.85 11 11.1 9 

14 0.73 10 0.75 10 
13 1.99 n 3.98 13 

28 0.51 19 0.81 11 
12 2.00 19 4.11 13 
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Table  V-7 .  (Cont inued)  

Element Whole % Rel .  s td.  
coal uncertainty 

Lu 0.05 15 
Hf 0.22 33 
Ta 0.14 87 
W 0.24 22 
Hg 0.28 22 
T1 0.31 13 
Pb 19.0 6 
Bi — — — 

Th 0.67 13 
U 0.21 14 

Iowa Coal 

Bottom % Rel.  s td.  Fly ash % Rel.  s td.  Fly ash % Rel.  s td.  
ash uncertainty PDC uncertainty EP uncertainty 

0.78 21 0.68 16 0.94 12 
1.43 17 2.22 20 3.76 31 
1.60 — — — 0.71 18 2.62 26 
1.71 36 1 . 2 6  16 2.98 16 
0.7 1 19 0.30 56 0.70 18 
0.(55 33 1.16 7 1.67 6 

35.2 6 84.2 5 1360 5 
— — — •— — — — — — 2.14 18 

5.09 10 3.24 5 4.42 9 
2 .  ()!3 14 1 .97 6 4.63 6 
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Table V-8. Results of SSMS analysis of Colorado Power Plant samples® 

Colorado Coal 

Element Whole % Rel.  s td.  Bottom % Rel,  s td.  Fly ash % Rel.  s td.  Fly ash % Rel.  s td.  
coal uncertainty ash uncertainty PDC uncertainty EP uncertainty 

g ::: !: i: i 
Na 632 10 3040 14 2780 7 11,400 8 
Mg 1120 10 8640 8 5270 1 7650 6 
A1 0.990% 9 4.96% 12 3.63% 6 3.62/ 5 
Si 
P 306 
S 
Cl 
K 719 
Ca 0.284 

2^96% 4 16.8% 6 14.3% 5 11-0% 6 
6 33 9100 19 4810 19 8650 17 
1.90% 18 8.54% 16 1.05% 16 6.29% 19 
6.82 14 19.8 13 21.0 10 54.3 20 

12 9980 13 5440 7 8020 11 
4 3.81% 7 1.99% 5 2.52% 6 

Ti 409 
V 12.5 

1 JP" '8° 199̂  \ 44%-' 6 
9 105 10 91.9 8 136 5 

5 :  'r 'I i :  ' ,  :  _  %  
Fe 
Co 4.18 
Ni 16.0 

o:861% 6 14.2% 4 6.82% 4 2.28% 5 
4 55.8 4 29.5 4 73.2 4 

16 502 6 314 10 626 9 

: -ii: •» 1 t: -i 'i 

cr> cr» 

^All  concentrations in units oi  ppm by weight unless indicated otherwise.  
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Table  V-8 .  (Cont inued)  

lement Whole % Rel.  s td.  Bottom 
coal uncertainty ash 

Ge 5.99 16 25.4 
As 4.58 9 11.0 
Se 3.15 12 9.69 
Br 17.9 14 2.24 
Rb 4.91 7 51.2 
Sr 115 4 26:3 
Y 3.41 5 6!i .4 
Zr 22.8 6 152 
Mo 1.78 7 12.3 
Cd 1.46 8 1 .55 
Sn 0.57 12 1.84 
Sb 0.  56 8 2.13 

I  2.21 14 0.29 
Cs 0.62 14 2.65 
Ba 92.6 17 632 

La 9.21 13 35.8 
Ce 17.4 10 81.3 
Pr 1.57 12 5.60 
Nd 8.93 n 33.7 
Sni 1.83 12 6.97 
Eu 0.16 12 1.62 
Gd 1.86 12 6.22 
Tb 0.12 7 1.44 
Dy 1.86 14 4.59 
Ho 0.16 14 0.51 
Er 0.59 14 1.73 
Tni 0.09 59 0.54 

Colorado Coal 

% Rel.  s td.  Fly ash % Rel.  s td.  Fly ash % Rel.  s td.  
uncertainty PDG uncertainty EP uncertainty 

6 50.2 5 727 4 
12 65.6 19 584 6 

5 4.26 6 18.7 6 
21 1.08 9 2.44 18 
14 32.3 10 75.7 9 
18 360 11 572 8 

9 57.7 7 54.9 8 
7 145 3 300 5 

11 8.30 9 39.8 8 

24 9.07 9 184 4 

15 2.12 7 48.4 6 
11 4.99 7 75.8 5 

9 1.40 10 3.09 6 
17 2.37 14 6.07 15 

14 862 18 1110 17 

14 35.0 9 48.5 7 
9 83.6 16 131 7 

10 5.14 15 6.63 11 
13 27.3 n 53.5 7 

18 9.32 13 16.2 16 
9 1 .75 10 2.37 7 

16 7,46 12 12.8 7 

12 1.66 11 2.33 11 

16 6.62 15 13.3 8 

9 0.50 7 1.11 11 

15 2.26 13 4.15 9 
14 0.51 10 0.78 18 
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Table  V-8 .  (Cont inued)  

Colorado Coal 

Element Whole % Rel.  s td.  Bottom % Rel.  s td.  Fly ash % Rel.  s td.  Fly ash % Rel.  s td.  
coal uncertainty ash uncertainty PDC uncertainty EP uncertainty 

Yb 0 .24 13 1.84 16 2.44 17 3.37 15 
Lu - - " — 0.33 26 0.73 12 0.67 19 
Hf - - — — — 2.11 21 2,03 14 7.38 19 
Ta — — — 1.46 22 0.57 15 2.85 25 
W 0,  ,31 28 1.95 18 0.87 20 3.27 12 
Hg 1, ,33 25 0.58 17 0.37 33 1.03 16 
T1 0,  ,33 12 0.45 17 0.64 6 23.7 7 
Pb 25, ,4 5 29.7 6 40.4 5 2070 9 
Bi 0.  ,09 " — — — — — — — — — - — 5.42 12 
Th 0.  ,56 13 5.76 12 4.86 6 3.41 8 
U 0. ,63 6 3.06 11 4.43 5 7.35 7 
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Table V-9. Relative precision of RSC values 

Coal Ash 

Element Cu Zr Cu Zr 
(%)  (%)  (%)  (%)  

Al 68 33 38 7 

Cr 60 19 12 9 

Se 91 38 30 12 

Br 40 5 23 7 

La 47 11 35 17 

Ce 50 11 51 38 

Ho 50 7 

Lu 52 25 

T1 42 14 
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larger than the other nine by a factor of two. An explanation for this 

increase is  not apparent.  The uncertainties for Cd in the bottom ash 

and Iowa coal are high because of i ts  low concentration.  The 

inhomogeneity of Ba compared to Cu in these samples caused the 

relatively high uncertainty in the results for Ba. The uncertainties 

for Cs,  Hg, and the rare earths are high for the same reasons stated 

previously in the discussion of the RSC values.  The high uncertainties 

for Hf,  Ta,  and W are caused by their  low concentrations.  No 

uncertainty is  reported for Ta in the Iowa bottom ash because i t  was 

detected in only one of the twelve samples.  The high uncertainties for 

T1 in the bottom ash and Bi in the f ly ash-EP are caused by their  low 

concentrations.  No uncertainty is  reported for Bi in the Colorado coal 

because i t  was detected in only one of the twelve samples.  

A material  balance study was performed for the Iowa samples and, 

also,  for the Colorado samples.  The completeness of the elemental  

recoveries was determined using: 

X=  HTA[ (0 .6 -LTAg -B )+  ( 0 . 34 -LTAp -P )+  ( 0 . 06 -LTA^ -E ) ]  (V -3 )  

and 

WC = LTA^'C (V -4 )  

where LTA^ b P E the fractions of residue left  after the coal,  

bottom ash,  f ly ash-PDC, and f ly ash-EP are low-temperature ashed; 

C, B, P,  and E are the elemental  concentrations in the coal,  bottom ash,  

f ly ash-PDC, and f ly ash-EP; HTA is  the fraction of residue left  after 

the coal is  high-temperature ashed; and the numerical  factors are the 
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relative distribution of the total  ash between the bottom ash,  f ly ash-

PDC, and f ly ash-EP hoppers stated previously in the Experimental  

section of this chapter.  The factors LTA^ and HTA put the elemental  

concentrations on a whole coal basis for the ashed coal and total  ash,  

respectively.  The values of LTA and HTA (255,255) are reported in 

Table V-IO. The recovery of each element is  determined by comparing 

the values of X and WC. The results of the material  balance study are 

reported in Table V-11. 

The relative uncertainty in the elemental  comparisons can be 

determined using the uncertainties for the RSC values,  concentrations,  

wet chemical analysis of Cu (±5%), LTA factors (no worse than ±5%), 

HTA factors (approximately ±10% for the Iowa coal,  ±20% for the 

Colorado coal)  (255),  and the total  ash distribution factors (estimated 

at  ±20% for the bottom ash,  ±30% for the f ly ash-PDC, and ±40% for the 

f ly ash-EP).  The relative uncertainties in the total  ash distribution 

factors were estimated from the comparisons of the factors from other 

materials balance studies (4,79,197).  These uncertainties can be 

combined using the equations for the propagation of uncertainties in 

computed measurements (257).  The relative uncertainty in the comparison 

for re,  which has some of the lowest uncertainties associated with i t ,  

is  ±21% for the Iowa coal and ±27% for the Colorado coal.  The 

difference between the Iowa and Colorado values is  caused by the 

difference in the uncertainties in the HTA factors.  The relative 

uncertainty in the comparison for Be, which has some of the highest  

uncertainties associated with i t ,  is  ±43% for the Iowa coal and ±71% 
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Table V-10. Ashing factors for Power Plant samples 

Sample LTA HTA 

lA coal 0.173 0.11 

Bottom ash 0.756 

Fly ash-PDC 0.553 

Fly ash-EP 0.779 

CO coal 0.174 0.075 

Bottom ash 0.959 

Fly ash-PDC 0.543 

Fly ash-EP 0.794 
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Table V-11. Results of material  balance study^ 

Iowa Coal Colorado Coal 

Element wC X % Rel.  WC X % Rel CO Dif 
dif .  dif .  lA Dif 

Li 1.42 0.58 -52 5.99 1.12 -81 -29 
Be 0.52 0.29 -43 1.16 0.34 -70 -27 
B 26.1 39.7 +52 52.9 21.3 -60 -112 
F 30.4 2.46 -92 53.4 1.33 -98 -6 
Na 130 210 +61 632 259 -59 -120 
Mg 339 471 +39 1120 558 -50 -89 
A1 3700 3350 -9.6 9900 3320 -67 -57 
Si 1.36% 1.40% +2.4 2.96% 1.17% -61 -63 
P 145 381 +160 306 571 +87 -73 
S 0.958% 0.282% -71 1.90% 0.439% -77 -6 
Cl 4.19 2.04 -51 6.82 1.67 -76 -25 
K 567 829 +46 719 624 -13 -59 
Ca 7180 6170 -14 2840 2330 -18 -4 
Sc 1.53 1.49 -3.0 2.14 1.67 -22 -19 
Ti 258 285 +11 409 297 -27 -38 
V 7.61 6.59 -14 12.5 7.67 -39 -25 
Cr 5.85 5.97 +2.0 7.20 5.85 -19 -21 
Mn 58.0 70.8 +22 20.4 17.8 -13 -35 
Fe 1.01% 0.948% -6.1 0.861% 0.825% -4.  2 +2 
Co 3.08 2.02 -34 4.18 3.59 -14 +20 
Ni 15.4 20.1 +31 16.0 33.4 +109 +78 
Cu 5.05 5.62 -7.2 6.61 8.15 +23 +30 
Zn 158 105 -34 67.2 110 +64 +98 
Ga 1.50 2.77 +84 2.37 2.47 +4. 5 -79 
Gc 6.04 "7 1 n +18 5.99 5.69 -4.  ,9 -23 
As 6.57 7.09 +7.9 4.58 4.80 +4. ,8 -3 
Se 2.15 0.66 -69 3.15 0.63 -80 -11 
Br 19.9 0.28 -99 17.9 0.14 -99 0 
Rb 4.03 4.56 +13 4.91 3.47 -29 -42 
Sr 42.9 19.6 -54 115 23.6 -79 -25 
Y 7.54 5.53 -13 3.41 4.66 +37 +50 
Zr 20.9 17.4 -17 22.8 11.9 -48 -31 
Mo 1.65 0.66 -60 1.78 0.94 -47 +13 
Cd 0.63 1.13 +81 1.46 1.13 -23 -104 
Sr.  0.36 0.67 +84 0.57 0.36 -38 -122 
Sb o!49 0.49 +0.4 O!56 O!55 0 0 

^All  concentrations in units of ppm by weight unless indicated 
otherwise.  
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Tab le  V-11 .  (Cont inued)  

Iowa Coal Colorado Coal 

Element WC X % Rel.  WC X % Rel. CO Dif.  
dif .  dif .  lA Dif.  

I  1.12 0.15 -52 2.21 0.06 -97 -10 
Cs 0.34 0.23 -31 0.62 0.21 -66 -35 
Ba 37.2 33.0 -11 92.6 55.4 -40 -29 
La 5.67 3.15 -45 9.21 2.72 -70 -25 
Ce 15.1 5.97 -60 17.4 6.38 -63 -3 
Pr 1.17 0.50 -58 1.57 0.41 -74 -16 
Nd 7.87 3.42 -57 8.93 2.45 -73 -16 
Sm 2.21 0.30 -60 1.83 0.62 -66 -6 
Eu 0.31 0.26 -17 0.16 0.13 -20 -3 
Gd 2.13 0.96 -55 1.86 0.53 -72 -17 
Tb 0.18 0.21 +13 0.12 0.12 0 -13 
Dy 1.48 0.62 -58 1.86 0.44 -77 -19 
Ho 0.15 0.09 -43 0.16 0.04 -75 -32 
Er 0.65 0.23 -65 0.59 0.15 -74 "9 
Tm 0.06 0.06 +7.1 0.09 0.04 -54 -61 
Yb 0.15 0.21 +41 0.24 0.16 -33 -74 
Lu 0.05 0.08 +82 — — 
Hf 0.22 0.20 -5.8 — — — — — 
Ta 0.14 0.14 +5.3 — — — — — — 
W 0.24 0.18 -26 0.31 0.13 -60 -34 
Hg 0.28 0 .06 -78 1.33 0.04 -97 -19 
T1 0.31 0.10 -68 0.33 0.14 -57 +11 
Pb 19.0 14.4 -24 25.4 11.7 -54 

O
 

C
O

 
1 

Bi — 0.09 0.02 -72 
Th 0.67 0.49 -27 0.55 0.40 -29 -2 
U 0.21 0.24 +16 0.63 0.28 -55 -71 
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for the Colorado coal.  The relative uncertainties in the comparison for 

the rest  of the elements range between these values for the two coals.  

In general ,  the material  balance is  satisfactory for both the Iowa and 

Colorado coals.  The analytical  problems associated with Li,  Be, B, Na, 

Mg, Cs,  Ba, W, and Bi were stated previously in the discussions of the 

uncertainties in the concentrations and RSC values.  The relative 

differences in WC and X for S,  Se,  Mo, Hg, T1, and the halogens are 

appreciably negative for both coals.  These elements are lost  from the 

stack (4,78,79,197,254,258-262).  The large posit ive relative 

differences for P may be caused by inaccurate RSC values,  especially for 

the ashes because the precision of the reported concentration for P in 

the standard f ly ash sample is  poor (253).  Similarly,  the large 

negative relative differences for many of the rare earths may be caused 

by inaccurate RSC values,  especially for the coals,  because of the lack 

of values reported by the sources of the standard samples for these 

elements and the fact  that  the precision of the values that  are 

reported is  general  ly uriKnown. The large posit ive and Mcgativs 

differences for Ni and Sr are possibly due to inhomogeneity in the 

coals which create errors in the RSC values.  The large posit ive 

differences for K, 6a,  Cd, and Sn in the Iowa coal and Y in the 

Colorado coal are possibly caused by inhomogeneity in those coals.  The 

inhomogeneity of Zn has been mentioned already and some of the Zn may 

not be recovered because of deposit ion on the walls of the furnace 

(263).  The differences between the relative differences for the 

elements in the Iowa and Colorado coals indicate that  the relative 
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differences for the elements in the Colorado coal are shifted negatively 

relative to the Iowa coal.  This shift  may be due to an inaccurate 

value for the Colorado HTA factor.  Correcting for this shift  can 

improve the relative differences of some of the elements (e^.£. ,  Zr and 

U) to acceptable values.  Inaccurate values for the total  ash distri­

bution may also cause errors in the relative differences.  

The relative elemental  enrichment in the three types of ashes from 

the two types of coal are reported in Table V-12. The values are 

calculated using: 

LTAg p -B,P,E 
relative enrichmentg_p_g = (UAg-B)+'(LTAp-P) + (LTA^-E) (^-5) 

where the symbols are the same as in Equation V-3. The elements which 

form refractory compounds and are associated with the mineral  fraction 

of the coal,  such as Be, Ca, Mn, and Fe,  are enriched in the bottom ash 

(79,91,258).  Sulfur is  enriched in the bottom ash because of the 

involati le metal  sulfates present in the coal and enriched in the f ly 

ash-EF because of the organic sulfur  and volati le metal  sulfides which 

vaporize in the furnace and condense on the f ly ash as the gases cool 

(258,268).  The enrichments of Na, V, Co, Ni,  Cu, Zn, Ga, Ge, As,  Se,  

Rb, Sr,  Mo, Cd, Sn, Sb, Cs,  Ba, W, Hg, T1, Pb, Bi,  U, and the halogens 

in the f ly ash-EP may be due to the vaporization of compounds of these 

elements or the elements themselves in the furnace and their  conden­

sation on the surface of the f ly ash as the gases cool (4,5,18,79,82, 

115,137,197,254,258,264-272).  Also,  some of these elements,  such as 

V, ni ,  Co, Cu, Ga, Ge, Se,  Mo, Sb,  and U, are associated with the 
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Table V-12. Relative elemental  enrichment 

Iowa Coal Colorado Coal 

Element Bottom Fly ash Fly ash Bottom Fly ash Fly ash 
ash PDC EP ash PDC EP 

Li 0.315 0.301 0.384 0.412 0.228 0.360 
Be 0.445 0.242 0.313 0.630 0.176 0.195 
B 0.375 0.274 0.352 0.211 0.311 0.477 
F 0.240 0.255 0.504 0.131 0.277 0,592 
Na 0.278 0.122 0.601 0.176 0.161 0.662 
Mg 0.324 0.179 0.497 0.401 0.244 0.355 
A1 0.345 0.222 0.433 0.406 0.297 0.297 
Si 0.385 0.395 0.221 0.399 0.340 0.261 
P 0.336 0-265 0.400 0.403 0.213 0.385 
S 0.413 0.105 0.482 0.538 0.066 0.396 
Cl 0.204 0.307 0.490 0.208 0.221 0.571 
K 0.311 0.326 0.363 0.426 0.232 0.342 
Ca 0.538 0.281 0.181 0.458 0.239 0.303 
Sc 0.293 0.231 0.475 0.376 0.287 0.337 
Ti 0.273 0.283 0.444 0.440 0.173 0.387 
V 0.221 0.200 0.579 0.315 0.277 0.408 
Cr 0.335 0.286 0.379 0.308 0.255 0.437 
Mn 0.605 0.308 0.087 0.461 0.323 0.216 
Fe 0.539 0.229 0.232 0.610 0.292 0.098 
Co 0.200 0.209 0.591 0.352 0.186 0.462 
Ni 0.284 0.175 0.540 0.348 0.218 0.434 
Cu 0.192 0.127 0.681 0.311 0.122 0.567 
Zn 0.056 0.071 0.873 0.068 0.062 0.870 
Gâ C. 053 Û GuG G .881 n n-70 n noc A O O U 
Ge 0.058 0.084 CL858 O!O32 0.063 0.906 
As 0.037 0.103 0.859 0.017 0.099 0.884 
Se 0.297 0.109 0.593 0.297 0.131 0.572 
Br 0.382 0.297 0.321 0.389 0.188 0.423 
Rb 0.311 0,254 0.434 0.322 0.203 0.476 
Sr 0.311 0.189 0.516 0.220 0.301 0.479 
Y 0.283 0.204 0.513 0.367 0.324 0.308 
Zr 0.314 C.264 0.422 0.255 0.243 0.502 
Mo 0.151 0.160 0.679 0.204 0.137 0.659 
Cd 0.026 0.042 0.933 0.008 0.047 0.946 
Sn 0.168 0.096 0.736 0.035 0.040 0.924 
Sb 0.031 0.051 0.918 0.026 0.060 0.914 
I 0.134 0.266 0.599 0.060 0.292 0.647 
Cs 0.173 0.173 0.654 0.239 0.213 0.548 
Ba 0.328 0.184 0.488 0.243 0.331 0.427 
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Table V-12. (Continued) 

Iowa Coal  Colorado i Coal  

element Bottom Fly ash Fly ash Bottom Fly ash Fly ash 
ash PDC EP ash PDC EP 

La 0.285 0.233 0.482 0.300 0.294 0.407 
Ce 0.254 0.212 0.534 0.275 0.282 0.443 
Pr 0.273 0.225 0.502 0.322 0.296 0.382 
Nd 0.237 0.231 0.532 0.295 0.238 0.467 
Sm 0.241 0.242 0.517 0.214 0.287 0.499 
Eu 0 -  3G1 0.290 0.349 0.282 0.305 0.413 
Gd 0.282 0.256 0.461 0.235 0.282 0.483 
Tb 0.344 0.355 0.302 0.266 0.306 0.429 
Dy 0.250 0.225 0.514 0.187 0.270 0.543 
Ho 0.349 0.322 0.329 0.241 0.237 0.522 
Er 0.243 0.250 0.502 0.212 0.277 0.511 
Tm 0.308 0.259 0.427 0.294 0.277 0.429 
Yb 0.212 0.258 0.531 0.241 0.319 0.440 
Lu 0.325 0.284 0.391 0.146 0.490 0.365 
Hf 0 .193 0.300 0.508 0.149 0.215 0.635 
la 0.311 0.147 0.542 0.253 0.147 0.600 
W 0.287 0.212 0.501 0.320 0.144 0.537 
Hg 0.414 0.176 0.410 0.292 0.186 0.522 
T1 0.187 0.334 0.479 0.018 0.026 0.956 
Pb 0.024 0.057 0.919 0.014 0.019 0.967 
Bi — — — — — 1.000 — 1.000 
Th 0.399 0.254 0.347 0.411 0.346 0.243 
U 0.237 0.228 0.535 0.206 0.298 0.495 
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organic fract ion of the coal  (91,267).  The elements are carr ied from 

the furnace with the f lue gas and deposi ted on the surface of the f ly 

ash (197,267).  The enrichments of  Hf and Ta may be caused by their  

introduction into the f lue gas when compounds of  other  elements which 

they associate with are vaporized.  No elements are enriched 

signif icantly in the f ly ash-PDC. 

The manner in which the amounts of  the elements recovered in the 

total  ash are distr ibuted between the three types of  ash from the two 

types of  coal  is  reported in Table V-13.  The relat ive elemental  

distr ibutions are calculated using;  

relat ive (0.6,0.34,0.06)*LTAg p ^•(B,P,E) 

distr ibutiong^p^g = (o .6-LTAg-B)+ (0.34-LTAp'P)+ (0.06-LTA^-E} (^-6) 

where the numbers and symbols are the same as  in Equation V-3.  The 

elements which form refractory compounds and are associated with the 

mineral  f ract ion of the coal ,  such as Be,  Ca,  Mn, Fe,  and S in metal  

sulfates,  have a  higher percentage in the bottom ash ( i_.£. ,  more of  the 

element in the original  coal  ends up in the bottom ash than in the other  

two types of  ash).  More of  the volat i le  and organical ly associated 

elements,  such as Zn,  Ga,  Ge,  As,  Cd,  Sb,  and Pb,  end up in the f ly 

ash-^P.  The results  reported in Tables V-12 and V-13 indicate that  the 

bottom ash would be a  more useful  source for  the elements which form 

refractory compounds associated with the mineral  f ract ion of the coal  

than the other  two types of  ash.  The f ly ash-EP would be a  more useful  

source for  the elements which are volat i le  or  form volat i le  compounds 
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Table V-13.  Relat ive elemental  distr ibution of ashes 

Iowa Coal  Colorado Coal  

Element Bottom Fly ash 
^ pnr  (°.L\ \I0 J L / u  v / s ;  

Fly ash Bottom Fly ash Fly ash 
EP {%} ash {%) PDC [%) EP {%) 

Li  60.1 32.5 7.3 71.4 22.3 6.2 
Be 72.5 22.4 5.1 84.1 13.3 2.6 
B 65.3 27.5 6.2 48.5 40.5 11.0 
F 55.1 33.3 11.6 37.7 45.2 17.1 
Na 68.3 16.9 14.8 52.8 27.4 19.8 
Mg 68.2 21.3 10.4 69.7 24.1 6.2 
A1 67.1 24.5 8.4 67.2 27.9 4.9 
Si  61.0 35.5 3.5 64.6 31.2 4.2 
P 63.8 28,6 7.6 71.7 21.5 6.8 
S 79.3 11.4 9.2 87.4 6.1 6.4 
Cl 47.8 40.8 11.5 53.3 32.0 14.6 
K 58.4 34.8 6.8 72.0 22.2 5.8 
Ca 75.2 22.3 2.5 73.4 21.7 4.9 
Sc 62.1 27.8 10.1 65.7 28.4 5.9 
Ti 57.1 33.6 9.3 76.2 17.0 6.7 
V 56.3 29.0 14.8 61.4 30.6 8.0 
Cr 62.7 30.3 7.1 62.0 29.2 8.8 
Mn 76.8 22.1 1.1 69.2 27.5 3.2 
Fe 77.9 18.8 3.4 77.7 21.1 1.2 
Co 52.9 31.5 15.7 69.9 20.9 9.2 
Ni 65.0 22.7 12.3 67.6 24.0 8.4 
Cu 57.7 21.7 20.5 71.1 15.9 13.0 
Zn 30.5 21.8 47.6 35.9 18.4 45.7 
Ga 32.6 18.7 48.7 35.4 23.5 41.0 
Ge 30.5 24.6 44. /  20.1 22.5 5/  .5  
As 20.5 32.2 47.3 10.3 34.9 54.3 
Se 71.0 14.8 14.2 69.4 17.3 13.4 
Br 65.6 28.9 5.5 72.3 19.8 7.9 
Rb 62.4 28.9 8.7 66.4 23.7 9.8 
Sr 66.5 22.8 10.7 50.1 39.0 10.9 
Y 62.9 25.6 11.4 63.1 31.6 5.3 
Zr 62.1 29.6 8.3 57.5 31.1 11.3 
Mo 50.4 28.3 21.3 58.6 22.4 19.0 
Cd 18.1 16.5 65.4 6.2 20.5 73.4 
Sn 56.7 18.4 24.8 23.3 15.2 61.4 
Sb 20.3 19.1 60.6 17.0 22.5 60.5 
I 38.9 43.7 17.4 20.7 57.0 22.3 
Cs 51.5 29.1 19.4 57.6 29.2 13.2 
Ba 68.2 21.7 10.2 51.3 39.7 9.0 
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Table V-13. (Continued) 

Iowa Coal  Colorado Coal  

Element Bottom Fly ash Fly ash Bottom Fly ash Fly ash 
ash 1%) PDC (%) EP (%) ash (%) PDC (%) EP (%) 

La 61.3 28.3 10.4 59.1 32.8 8.0 
Ce 59.4 28.2 12.5 57.3 33.4 9.2 
Pr 60.6 28.2 11.1 61.0 31.8 7.2 
Nd 56.3 31,1 12.6 61.8 28.3 9.8 
Sm 55.1 31.8 12.0 50.2 38.1 11.7 
Eu 64.4 29.3 6.2 56.9 34.8 8.3 
Gd 59.6 30.7 9.7 53.1 36.0 10.9 
Tb 59.8 34.9 5.2 55.2 35.9 8.9 
Dy 59.2 29.1 11.7 47.4 38.8 13.8 
Ho 61.9 32.3 5,8 56.4 31.4 12.2 
Er 56.3 32.2 11.4 50.4 37.4 12.1 
Tm 60.8 30.6 8.6 59.5 31.8 8.7 
Yb 51.5 35.6 12.9 51.7 38.9 9.5 
Lu 51.9 30.6 7.4 40.7 51.0 8.3 

46.6 41.1 12.3 52.8 28.8 18.5 
Ta 69.3 18.6 12.1 70.6 15.6 13.8 
W 62.8 26.3 10.9 70.3 17.9 11.8 
Hg 74.7 18.0 7.4 65.0 23.4 11.6 
T1 44.0 44.7 11.3 14.2 11.4 • 74.4 
Pb 16.1 21.8 62.0 11.4 8.8 79.7 
Bi — 100 — — — — — — 100 
Th 69.1 24.9 6.0 65.1 31.1 3.8 
U 56.5 30.8 12.8 48.5 39.8 11.7 
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in the original  coal ,  or  are associated with the organic fract ion of 

the coal .  
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VI. CONCLUSIONS 

A cal ibrat ion scheme which accurately defines the response of  the 

photographic emulsion to the impinging ions from the part icular  samples 

of  interest  is  necessary for  accurate results  using SSMS. The photo-

plates exposed in this  project  were cal ibrated using a  computer  

applicat ion of the Franzen-Maurer-Schuy formula.  Surprisingly,  the 

results  of  the cal ibrat ion indicate an increase in the sensi t ivi ty of 

the emulsion with increasing m/z rat io due to the increasing momentum 

of  the ions.  

Of the three internal  s tandards selected for  the analysis  of  the 

ashed coal  and ash samples,  Cu,  Ba,  and Zr,  only Cu proved to be sui t­

able for  this  part icular  project .  The inhomogeneous distr ibution of Ba 

in  reference and real  samples and the diff iculty of i ts  dissolut ion for  

wet chemical  analyses,  representing an independent  analyt ical  method,  

precluded i ts  usefulness.  The small  amounts of  sample submitted for  

wet chemical  analysis  also precluded the usefulness of  Zr as  an internal  

s tandard because the amounts of  Zr in those samples were close to the 

detect ion l imit  (10 ug/50 mL) of  the spectrophotometric  method (252) 

employed as  another independent  analyt ical  method.  

The accuracy of  the elemental  relat ive sensi t ivi ty coefficients  is  

dependent  on the accuracy of the elemental  concentrat ions reported for  

the standard samples.  Cert if ied concentrat ions are best  and the rest  

are suspect  in varying degrees according to the homogeneity of  the 

samples,  analyt ical  method used,  and number of  analyses performed.  The 

accuracy of the coefficients  is  also dependent  on the SSMS analyses of 
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the standard samples.  I t  is  affected by the homogeneity of  the standard 

samples,  posi t ion of elemental  concentrat ion on the photoplata cal i­

brat ion curve and associated inaccuracies of  cal ibrat ion,  number of  

spectral  l ines used in the determination of  the elemental  concentrat ion,  

and instrumental  aberrat ions.  

The precision and apparent  accuracy of  the relat ive sensi t ivi ty 

coefficients  were found to be sat isfactory for  the majori ty of  the 

elements in the standard samples used as  cross checks.  The large 

number of  s tandard samples and mult iple analyses helped reduce the 

s tat is t ical  uncertainty and effect  of  the systematic errors ,  but  the 

poor precision (e_.2_. ,  phosphorous)  and small  number of  concentrat ions 

reported for  some elements (e^.£. ,  rare earths)  in the standards 

increased the inaccuracy of the analyt ical  results  for  those elements.  

The precision and apparent  accuracy of  the elemental  concentrat ions in 

the Iowa State Universi ty Power Plant  samples are sat isfactory for  the 

majori ty of  the elements.  The applicabil i ty of the relat ive sensi­

t ivi ty coefficients  to tne analyses of  these samples may be diminished 

by differences in the chemical  speciat ion of the elements between the 

standard and Power Plant  samples (262) and the variable response of  the 

SSMS method to elemental  differences between the two types of  samples 

due to differences in the handling of the samples differences in 

methods of  sample reduction).  The results  of  the analysis  of  ashed 

coal  and other  ashes by SSMS are improved when l ine areas,  instead of 

peaks,  are measured,  the mass spectra are interpreted by computer  

methods,  and an accurate cal ibrat ion and computat ion scheme with 
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accurate correct ions for  background fog and other  factors  is  

developed.  

Results  of  the material  balance study are sat isfactory for  the 

majori ty of  the elements s tudied.  They are comparable to results  of  

other  s imilar  s tudies (4,79,262),  al though this  study was more 

extensive.  Systematic errors  in relat ive sensi t ivi ty coefficients  

for  specif ic  elements (e_.£. ,  phosphorous and the rare earths)  account  

for  some of  the divergent  results  while differences in the composit ion 

of  the three types of  Power Plant  ash (262) account  for  others.  The 

uncertaint ies  in the composit ion of  the low-temperature and high-

temperature ashes and their  distr ibution also affect  the results  (265).  

Nonetheless,  the study revealed enrichment of  some elements in the 

three types of  ash s tudied.  The bottom ash,  which is  r ich in Be,  S,  

Ca,  Mn, and Fe,  might  be a  possible future source of  beryll ium and 

manganese.  On the other  hand,  the f ly ash from the electrostat ic  

precipi tator  is  relat ively r ich in Zn,  Ga,  Ge,  As,  Cd,  Sb,  and Pb.  As 

such ,  IT migh t  be  a  poss ib l e  source  o f  ga l l ium and  ge rman ium which  GO 

not exist  abundantly in natural  deposi ts .  The magnitude of  the amount 

of  ash that  wil l  result  from the burning of  coal  is  so great ,  however,  

that  i t  should not  be discounted as a future source of  valuable 

materials  as  other  r icher sources are depleted.  

The ASTM sampling and sample preparat ion methods provided 

representat ive samples,  which were important  for  the success of  the 

material  balance s tudy.  The inhomogeneity problems found in many 

aspects  of  this  project  may be due to "conglomerates" (273) in the 
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samples.  Conglomerates are groups of  crystals  of  different  compounds 

which have grown together simultaneously upon precipi tat ion to form 

species which are not  well  defined,  but  very resistant  to crushing by 

typical  grinding methods used in an at tempt to homogenize the 

analyt ical  samples.  This  resistance and differences in densi ty could 

have caused some of  the elements to be unevenly distr ibuted throughout 

the samples actual ly used in the SSMS. The rare earths and other  

elements (e^-S. . ,  Zr  and Hf) are known to form such species (273).  The 

improved elemental  precision and accuracy obtained in this  project  for  

the analysis  of  ashed coal  and the products  of  coal  combustion by SSMS 

indicate that  this  analyt ical  method is  applicable to mass balance 

s tudies in coal-f ired power plants  without  requir ing sample 

dissolut ion which might  be a  source of  contaminants  for  elements 

occurring at  low levels .  



www.manaraa.com

87 

VII.  SUGGESTIONS FOR FUTURE WORK 

Future research into a number of  aspects  of  this  project  could 

improve further  the applicabil i ty of  SSMS to material  balance s tudies 

in coal-f ired power plants .  Possible projects  include:  

1 .  Further  automation of  the method to provide more rapid data 

acquisi t ion and further  reduce the total  t ime of analysis  could reduce 

the cost  of  these studies.  

2.  Further  improvements in sparking s tabil i ty and reproducibi l i ty,  

further  study of the cal ibrat ion scheme and mass and energy dependence 

of  the emulsion response,  and bet ter  techniques for  sample preparat ion 

to improve the homogeneity of  the samples could improve further  this-

analyt ical  method.  

3 .  The development of  methods to improve the homogeneity of  

barium in ashed coal  and ash samples could make i t  more useful  as  an 

internal  s tandard.  

4.  Zirconium would be a useful  internal  s tandard for  samples 

containing enough of  the element to be amenable to cross checking by 

wet  chemical  methods of  analysis .  

5.  The sui tabil i ty of  both barium and zirconium as internal  

s tandards could be improved by accurate analyses of  these elements in 

ashed coal  and ash samples by sui table independent  analyt ical  methods 

other  than wet chemical  methods (e.s_,  instrumental  neutron act ivat ion 

analysis) .  
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6.  The uncertainty in the material  balance results  could be 

reduced by col lect ing separate coal  samples at  the same t ime the coal  

is  being used and the ash is  being produced and ashing them under 

condit ions similar  to those in the furnace to accurately determine the 

high-temperature ash content .  

7 .  The development of  a  method of  determining the part i t ioning 

of the total  ash between the various hoppers for  the bottom ash,  f ly 

ash collected by the primary dust  col lector ,  and f ly ash collected by 

the electrostat ic  precipi tator  could reduce further  the uncertainty 

in the material  balance results .  

8 .  A s tudy of  the day-to-day variat ions in the elemental  

concentrat ions of  samples col lected on different  days from the power 

plant .  

9.  A material  balance study of the coal  burned on individual  

days.  
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